
Overcoming Gassmann’s equation limitations in reservoir rocks

Abstract
Velocities of low-frequency seismic waves and, in most rocks, 

sonic logging waves depend on the compressibility of the undrained 
rock, which is conventionally computed from the drained rock 
compressibility using Gassmann’s equation. Although more 
comprehensive and accurate alternatives exist, the simplicity of 
the equation has made it the preferred fluid substitution model 
for geoscience applications. In line with recent publications, we 
show that Gassmann’s equation strictly applies only to rocks with 
a microhomogeneous void space microstructure that is devoid of 
cracks and microcracks. We use a rock physics model that separates 
the respective compliance contributions of pores and cracks on 
dry (drained) moduli and show that Gassmann’s model does not 
apply to rocks with measurable crack density. A fourth independent 
bulk modulus (in addition to the bulk moduli of the mineral 
matrix, dry frame, and saturating fluid) is required to take the 
effect of cracks into account and perform fluid substitution model-
ing for rocks with pores and cracks more accurately than prescribed 
by Gassmann’s equation. Therefore, we propose combining the 
Vernik-Kachanov model with Brown-Korringa’s equation for 
more reliable modeling of undrained bulk compressibility for 
reservoir rocks with measurable crack density. To conclude, a 
practical quantification of the applicability of Gassmann’s equation 
based on the combined effects of crack density and stress sensitivity 
is proposed.

Undrained compressibility of the fluid-saturated rock
The undrained compressibility Cud (or bulk modulus 

Kud = Cud
-1 ) (Table 1) of a rock subjected to isotropic compression 

and strain refers to its poroelasticity before any fluid leaves the 
pore space and after any pore-scale inhomogeneities of fluid 
pressure have relaxed. That is, pressures are equilibrated through-
out the pore space (Biot, 1941; Gassmann, 1951; Jaeger et al., 
2007; Mavko et al., 2009; Thomsen, 2020). Seismic and, in most 
cases, sonic P-wave velocities of conventional reservoir rocks 
can be computed from VP = (Mud/ρb)0.5, where ρb is the bulk 
density, and Mud = Kud + (4/3)G is the P-wave modulus of the 
undrained rock and G is its shear modulus that is independent 
of the fluid saturation in the case of nonviscous fluids. Because 
the bulk density dependence on fluid saturation is straightforward 
(a volumetric weighted average of the rock components), our 
ability to predict fluid saturation from seismic or sonic data 
hinges solely on our understanding of its effects on the undrained 
bulk modulus.

The decision to write this paper was motivated by recent publica-
tions by Thomsen (2020, 2021), who demonstrated that under 
certain circumstances (e.g., rock microstructure or f luid 
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compressibility) Gassmann’s equation for Kud may overestimate the 
effect of fluid saturation. A well-known form of this equation is

Kud = Kd + β2  [  ϕ __ 
 K  f   

   +   β – ϕ ____ 
 K  m  

  ]    
-1
        ,                     (1)

where Kd is the dry rock bulk modulus, Kf and Km are the bulk 
moduli of the effective fluid and mineral phases, respectively, ϕ 
is the total porosity, and β is the Biot coefficient (Table 1) defined 
as β = 1− Kd/Km. The undrained compressibility form of Gassmann’s 
equation is

Cud = Cd –       
 ( C  d   –  C  m  )      2   ______________  

ϕ ( C  f   –  C  m  )  +  C  d  –  C  m    
   .                        (2)

The four main assumptions that are made when applying 
Gassmann’s equation are: (1) pore pressure is equilibrated through-
out the pore space, (2) all the constituent minerals are linearly 
elastic and have the same bulk and shear moduli, (3) the rock is 
isotropic, and (4) the rock is fully saturated with low-viscosity 
fluids. Although challenged by several experimental results on 
sedimentary rocks, Gassmann’s equation is usually assumed to 
be independent of the pore-space microstructure and applicable 
to any compositionally microhomogeneous rock (Mavko et al., 
2009). This concept was questioned in recent papers by Thomsen 
(2020, 2021), who suggested that more accurate but also more 
complex models, such as those by Biot (1941) and Brown and 
Korringa (1975), must be used. Although still dependent on the 
aforementioned list of assumptions, both models consider four 
independent moduli (or compressibilities) instead of only the three 
(Kd, Kf, and Km) used in Gassmann’s equation to take into account 
the effect of the pore-space microstructure on the undrained rock 
compressibility. For example, Brown and Korringa (1975) intro-
duced a new mean compressibility CM (Table 1) that corresponds 
to the unjacketed bulk compressibility of the rock and relates to 
Biot’s poroelastic parameters H and R as follows: H −1 = Cd − CM 
and R−1 = H −1 − ϕCM. Brown-Korringa’s equation in its general 
form is given by Thomsen (2020) as

Cud = Cd –       
 ( C  d   –  C  M  )      2   ____________________   

ϕ ( C  f   –  C   ′    m  )  +  C  d   +  C   ′    m    –  2C  M    
   ,                (3)

where Cm'  is the unjacketed solid material compressibility. It is 
related to the unjacketed bulk compressibility CM = (1 − ϕ) Cm'  + ϕCϕ,  

where Cϕ is the unjacketed pore volume compressibility. Brown 

Manuscript received 18 December 2023; revision received 27 March 2024; accepted 1 April 2024.
1CGG, Calgary, Alberta, Canada. E-mail: fabien.allo@cgg.com.
2University of Houston, Houston, Texas, USA. E-mail: verniklev@gmail.com.

https://doi.org/10.1190/tle43050278.1

Special Section: Rock physics278      The Leading Edge      May 2024      



and Korringa (1975) argue that their 
model is reduced to Gassmann’s equation 
in the case of a compositionally micro-
homogeneous rock, which is assumed 
synonymous to a monomineralic rock, 
or a rock comprised of minerals with 
similar elastic properties. Indeed, if  
CM = Cm'  = Cm

 (which also implies that 
Cϕ = Cm), equation 3 is reduced to 
equation 2. However, in the case of 
microheterogeneous rocks, Cm'  differs 
from the effective mineral compress-
ibility Cm, and the difference between 
the undrained rock compressibilities 
predicted by equations 2 and 3 increases 
with the difference between Cm'  (or CM) 
and Cm. Although using Brown-
Korringa’s equation would be preferable, 
experimentally measuring unjacketed 
compressibilities remains a technical 
challenge, especially for Cϕ, which relies 
on precise measurements of pore volume 
variations as a function of pore pressure. 
For that reason, Brown-Korringa’s equa-
tion remains rarely applied in practice.

However, Thomsen (2020) suggests 
that the microhomogeneity restriction 
is not responsible for the difference 
between CM and Cm, attributing it rather 
to “a logical error made by both 
Gassmann and Brown and Korringa.” 
The error lies in the application of the 
unjacketed (hydraulically open) condi-
tion, where differential pressure (confin-
ing pressure minus pore fluid pressure) 
is kept constant so the solid material 
compressibility remains the only param-
eter governing the variations in rock 
volume. Therefore, according to 
Thomsen (2020), equation 3 applies to 
all macro-isotropic uniform rocks with 
equilibrated pore pressure. Furthermore, 
Thomsen (2020) suggests that Biot’s 
poroelastic modulus H (and therefore 
CM) can be determined from the ratio of undrained fluid pressure 
to confining pressure (i.e., Skempton’s coefficient B = PP /σ 
[Table 1]) in a quasi-static laboratory experiment:

B =    
 C  d   –  C  ud   ______ 
 C  d   –  C  M  

    = H(Cd – Cud).                         (4)

Unfortunately, this type of experiment remains too rare, 
expensive, and inconclusive to enable a routine application of 
Brown-Korringa’s equation. Importantly, Thomsen (2021) also 

hints that CM may depend on the effective stress and microge-
ometry of the rock but does not specify how. This leads us to 
consider this parameter and its impact on fluid substitution model-
ing in the framework of the Vernik-Kachanov rock physics model.

Vernik-Kachanov model: Revisited
Vernik and Kachanov (2010) introduced a rock physics model 

(V-K model) for isotropic rocks, which is based on the separation 
and different parameterization of the compliance contributions 
of pores and cracks (and/or grain contact and intragrain micro-
cracks). Cracks are approximated as spheroids of very low and 
variable aspect ratio α < 0.01, although typical cracks fall below 

Table 1. Definitions of various poroelastic compressibilities and coefficients. A porous sample is comprised of a solid material 
phase occupying an initial volume V i

m and a fluid phase residing in the initial pore volume V i
p so that the initial bulk volume of the 

sample is V i
b = V i

m + V i
p. The constants are defined in terms of confining (Pc), fluid (Pf), and differential (Pd = Pc − Pf) pressures. 

Drained or dry conditions mean that the fluid mass is null (mf = 0). Undrained or saturated conditions mean that the fluid mass 
remains constant. Unjacketed conditions means that the differential pressure remains constant. εm is the volumetric strain of 
the solid material.
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0.005 (e.g., Jaeger et al., 2007). Pores can have a variety of 3D 
geometries that typically do not resemble, even remotely, spheroids 
or ellipsoids. By and large, pores contribute to the total porosity, 
whereas cracks and microcracks control the stress sensitivity of 
elastic velocities and permeability in most reservoir rocks. The 
V-K model for consolidated sediments (e.g., sandstones and 
limestones) is based on the Mori-Tanaka effective field theory 
and yields the dry rock moduli as (Vernik and Kachanov, 2010; 
Vernik, 2016)

  Kd = Km  [1 +   
pϕ
 ____ 

1 – ϕ
   + A ( ν  m  )   η  0     

exp (–dσ)
 _ 

1 – ϕ
  ]      

-1

               (5a)

Gd = Gm  [1 +   
qϕ
 ____ 

1 – ϕ
   + B ( ν  m  )   η  0     

exp (–dσ)
 _ 

1 – ϕ
  ]      

-1

   ,           (5b)

where A(νm) and B(νm) are known functions of the Poisson’s ratio 
of the solid material (e.g., Benveniste, 1987), η0 = na3/V is the 
initial or zero-stress crack density parameter (Bristow, 1960) (n/V 
is the number of cracks per unit volume and a is the mean crack 
length), σ is the effective stress, and d is the crack aspect ratio 
distribution-dependent coefficient, which (based on laboratory 
measurement of velocity versus stress on dry sandstones and 
carbonates) generally varies between 0.05 and 0.07. The model 
given by equations 5a and 5b is strictly valid for rocks with porosity 
lower than the consolidation porosity (ϕcon that usually ranges 
between 22% and 32%). At that point, it can be extended by an 
empirical leg connecting the moduli at the consolidation porosity 
with the moduli at the critical porosity close to the earth’s surface 
onshore or the mudline offshore. The entire model is designed to 
describe the effect of compaction and diagenesis (first mechanical, 
then chemical) on dry elastic moduli.

The second part in the brackets of equations 5a and 5b rep-
resents the compliance contribution due to pores, while the effect 
of elastic interactions is accounted for by the Mori-Tanaka mul-
tiplier (1 − ϕ)−1 applied to both the second and third parts. 
According to Jaeger et al. (2007), some of the simpler pore shapes, 
such as tetrahedrons, cubes, rectangles, and hypotrochoids (with 
cusped corners), lend themselves for 2D mapping in terms of their 
geometry factors relative to those of a sphere. Pore-space compress-
ibilities in isotropic and shear conditions can be expressed as a 
product of matrix compressibility and volumetric and deviatoric 
strain concentration factors p and q, respectively (Kachanov et al., 
1994). These quantities, usually referred to as pore-shape factors, 
are explicit functions of the Poisson’s ratio of the solid material 
for spheroidal pores (e.g., Berryman, 1980b). The numerical values 
of p and q can be relatively well constrained, even for more complex 
shapes in 2D, given the petrographic observations of the pore 
perimeters and areas (Jaeger et al., 2007; Mur and Vernik, 2020). 
In-situ log data acquired in carbonates and arenite sandstones 
(with 2% to 12% of structural and matrix clay) with ϕ < ϕcon can 
be accurately described using equations 5a and 5b with the 

following empirical pore-shape factor expressions: p = (psphere + t) + bpϕ 
and q = (qsphere + t) + bqϕ, where psphere and qsphere are the pore-shape 
factors of spherical pores, t = 1.2 to reflect the fact that at very 
low porosity the pore geometry is generally not spherical but closer 
to tetragonal, and bp and bq generally range between 10 and 20 
(Vernik and Gallop, 2022).

The third part in the brackets of equations 5a and 5b corre-
sponds to the compliance contribution of cracks. The crack density 
parameter η = η0 exp(−dσ) can vary from 0 with no stress sensitivity 
to as high as 2 or 3 (strongly dependent on the crack length), 
where percolation can be achieved and ultimately lead to disin-
tegration. However, even rocks with intermediate η values between 
0.1 and 0.3 may exhibit significant stress sensitivity of their P- and 
S-wave velocities. A convenient feature of equations 5a and 5b, 
inherited from the Mori-Tanaka effective field theory, is decoupling 
between the crack density term and the term containing porosity 
and pore-shape factors. Because the aspect ratio (α) of spheroids 
barely affects their compliance when their diameters are kept 
constant and α is reduced below 0.1 (Sevostianov and Kachanov, 
2011), it indeed makes sense to use the crack density rather than 
the crack porosity as a parameter in elasticity formulations for 
cracks with α < 0.01. Practically, the zero-stress crack density η0 
can be constrained as a linear function of porosity in sandstones 
and carbonates using η0 = c1 + c2ϕ, with c1 ranging between 0.02 
and 0.25 and c2 usually about 2 (Vernik, 2016).

Vernik (2016) uses equations 5a and 5b in combination with 
Gassmann’s equation to predict the effects of fluid saturation on 
seismic and, in most cases, even sonic wave velocities in reservoir 

Figure 1. Dry- and water-saturated ultrasonic P-wave velocities versus confining 
stress in the gneiss core from a depth of 11,700 m in the Kola well (Vernik et al., 1994) 
superimposed on the Vernik-Kachanov rock physics model calibrated with the indicated 
parameters. Note how Gassmann’s-equation-based undrained VPud remains equal to the 
solid material velocity VPm and is larger than the measured (unrelaxed) water-saturated 
velocity VPw, regardless of the stress applied to this rock with extremely low porosity and 
high microcrack density induced by core recovery.
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rocks. The workflow was noted to pro-
duce dramatic change in slope in the 
velocity versus porosity space at porosity 
below 1%–2%, where the crack density 
effect dominates elastic moduli. On the 
other hand, Gassmann’s theory remains 
questionable when applied to very low-
porosity rocks with significant micro-
structural inhomogeneity (Müller and 
Sahay, 2014). To further investigate the 
issue, we resort to analysis of the data 
generated by Vernik et al. (1994) on an 
Archean gneiss core recovered from the 
Kola well at a depth of 11,700 m 
(38,300 ft). Both stress release (from 
more than 300 MPa in situ) and cooling 
(from more than 200°C in situ) resulted 
in the formation of microcracks, which 
impart dramatic stress sensitivity to this 
rock sample comprised of quartz, plagioclase, and about 22% 
micas. The benchtop porosity of this gneiss is about 1% (totally 
attributable to microcracks), which makes it a convenient example 
to illustrate the impact of compliant cracks on dry and saturated 
rock compressibilities in the absence of stiffer pores. As shown 
in Figure 1, the stress dependence of dry ultrasonic velocities in 
this crystalline rock with extremely low porosity is successfully 
modeled using equations 5a and 5b, where the solid material 
moduli were tentatively derived from the measurements at 150 MPa 
(i.e., at a confining stress approaching the crack closure stress of 
this damaged rock sample). Not surprisingly, given such large 
stress release and cooling effects, the zero-stress crack density of 
η0 = 1.05 inverted from the model calibration turns out to be 
extremely high. Application of Gassmann’s equation to the entire 
spectrum of stress-dependent data on this rock with extremely 
low porosity yields Kud ≈ Km and a P-wave velocity of VPud ≈ VP@150MPa. 
The latter result is included in Figure 1 as the dashed horizontal 
line to be compared with the fully water-saturated ultrasonic VPw 
in the same experiment. This represents the undrained and unrelaxed 
(in terms of pore-pressure equilibration) response, which, by 
definition, must satisfy inequality VPw > VPud. This example clearly 
shows that Gassmann’s equation can lead to large prediction errors 
when applied to cracked rocks with extremely low porosity and, 
more generally, any rock that does not satisfy Kud|ϕ = 0 = Kd|ϕ = 0 = Km.

While practical implications for such low-porosity rocks may 
not be of concern, the same inaccuracy persists for higher-porosity 
consolidated reservoir rocks if the void space presents a combina-
tion of pores and cracks, which is almost always the case in 
sandstones and carbonates, notably at low effective stress. Because 
Gassmann’s equation may exaggerate the fluid incompressibility 
effect, and the magnitude of the error depends on the difference 
between CM and Cm (Thomsen, 2020), we suggest using Brown-
Korringa’s equation instead of Gassmann’s equation for any rock 
containing even a minor number of cracks and subject to an 
effective stress that is significantly lower than the crack closure 
stress (σclosure). In the same manner that equation 3 can be compared 

with equation 2, the following reformulation of Brown-Korringa’s 
equation in terms of moduli is proposed for a direct comparison 
with equation 1:

Kud = Kd + ψ2  [  ϕ __ 
 K  f  

   +   1 – ϕ ____ 
  K   ′    m  

   +   ψ – 1 ____ 
 K  M  

  ] 
-1
  ,                (6)

where ψ is the bulk volume effective pressure coefficient (Table 1) 
of a microheterogeneous rock defined as ψ = 1 – Kd/KM (Müller 
and Sahay, 2016). To apply equation 6 in practice, we also suggest 
the following expressions derived from the V-K model for the 
unjacketed bulk modulus and unjacketed solid material bulk 
modulus of a microheterogeneous rock with cracks:

 KM = Km[1 + A(νm)η0exp(-dσ)]-1                           (7a)

K    ′   m =   lim  
ϕ→0

   (KM)  = Km[1 + A(νm)c1exp(-dσ)]-1,         (7b)

where c1 is the intercept of the linear function of porosity used to 
model η0. The second part in the brackets of equation 7a is the 
compliance contribution to the dry frame compressibility due to 
cracks from equation 5a. It is important to note that Km' , defined 
as the limit of KM when porosity tends to 0, is not a directly 
measurable property for rock samples with cracks subjected to an 
effective stress that is lower than the crack closure stress. It only 
becomes measurable at an effective stress that is higher than crack 
closure stress or for samples without cracks, in which case it 
reduces to Km. In agreement with Thomsen (2020), the introduction 
of equations 7a and 7b to compute KM and Km'  has nothing to do 
with micro-inhomogeneity in terms of the variations in mineral 
moduli of the solid material, but it is totally driven by the crack 
density term in the V-K model. Note that in poorly consolidated 
sediments (i.e., those with porosity greater than ϕcon), the effect 
described by equations 6, 7a, and 7b is implicitly contained in the 

Figure 2. (a) V-K-model-based dry bulk modulus versus porosity for a sandstone characterized by a relatively low effective 
stress of 19 MPa (in the consolidated regime) and significant crack density. This is compared to Gassmann-based predictions 
(thin lines) for brine- (Kbr = 3.6 GPa) and light-oil- (Ko = 0.9 GPa) saturated cases and the generalized B-K model of equation 6, 
with KM andK 'm moduli computed using equations 7a and 7b (thick lines). (b) Undrained P-wave velocity versus porosity using the 
same rock physics model combined with Gassmann predictions for gas (Kg = 0.25 GPa), oil, and brine (thin lines) compared to 
those of equations 6, 7a, and 7b (thick lines).
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dry rock moduli at the consolidation porosity and gradually 
decreases as porosity increases beyond that threshold value. The 
discrepancy between Gassmann’s and Brown-Korringa’s predic-
tions is illustrated in Figures 2a and 2b, which plot bulk modulus 
and P-wave velocity as a function of porosity and show that 
Gassmann’s modeling inaccuracy, which increases with crack 
density, is also proportional to the fluid incompressibility (i.e., 
the error is greater in brine-saturated rocks than in hydrocarbon-
saturated ones). Note that the unstable behavior of the model 
lines at a porosity of less than 2% is no longer observed with the 
proposed alternative model.

For the case considered in Figures 2a and 2b, Gassmann’s 
velocity overprediction in brine-saturated sandstone with relatively 
high crack density (η > 0.2) reaches a relative maximum of 3% in 
the 15%–25% porosity range. It is tapered to 2% as porosity is 
reduced from this level to 5% or increased to 35%. The oil case in 
Figures 2a and 2b is based on a light oil with a high gas/oil ratio. 
The oil versus gas case velocity difference decreases from a relative 
average of 1.6% for Gassmann’s model to a mere 0.3% when using 
Brown-Korringa’s equation.

The model comparison is further exemplified in Figure 3, which 
shows a log plot of a deep 23±1% porosity sandstone reservoir with 
an oil saturation of about 75%, transitioning to a water leg downhole. 
The reservoir is significantly overpressured, resulting in a low vertical 
effective stress of 19 MPa. The low-frequency velocity from the 
Gassmann’s equation-based oil-to-brine substitution is shown to 
be about 3% greater than the low-frequency velocity predicted using 
the combination of equations 6, 7a, and 7b. The unjacketed bulk 
modulus KM in these equations is a function of the effective mineral 
bulk modulus Km and the stress-dependent crack density parameter 
η, with zero-stress crack density η0 = 0.2 + 2ϕ in this example. Due 
to the sensitivity of Km to the clay volume fraction, it is challenging 
to compare the modeled brine-saturated P-wave velocity log in the 
reservoir to the actual sonic velocity below the oil-water contact. 
However, for a similar sandstone composition, the velocity predicted 
from equations 6, 7a, and 7b appears qualitatively more consistent 
than the higher velocity predicted with Gassmann’s model. Further 
investigations under different stress conditions may shed light on 
the practical significance of replacing Gassmann’s model with the 
model suggested in this work.

However, at this point we can state that Gassmann’s result is 
only accurate in rocks with extremely low crack density, (i.e., with 
very low zero-stress crack density or subject to very high effective 
stress approaching crack closure stress, where even the most inflated 
cracks start to close, so that crack density exponentially tends to 
zero). This suggests that the difference (Km – KM) and the error in 
Gassmann’s prediction of the fluid incompressibility effect on 
seismic velocity may simply be related to η0[1–exp(–dσ)]. Published 
laboratory measurements of velocities versus stress obtained on dry 
reservoir rocks, instead of new (challenging, expensive, and often 
inconclusive [Duranti, 2018]) quasi-static experiments to determine 
Skempton’s pore-pressure buildup coefficient (B) on fluid-saturated 
rocks, may be sufficient to constrain Gassmann’s error. In fact, the 
evasive η0 term can be accurately quantified through parameter 
optimization when calibrating the proposed model (specifically, 
equations 5a and 5b) to dry rock laboratory data.

Quantification of compliance to Gassmann’s assumptions
Although the applicability of Gassmann’s theory to a par-

ticular rock is a recurrent topic of discussion, few authors have 
attempted to quantify the deviation of rock behavior to the 
requirements of Gassmann’s model. Among these authors, Sahay 
(2013) defines a micro-inhomogeneity parameter n (referred to 
simply as a homogeneity parameter hereafter) with a value of 
1 for Gassmann-compliant rocks and values that deviate from 1 
for rocks that violate Gassmann’s assumptions. According to 
Müller and Sahay (2014), the potential deformational energy due 
to a stress applied to a rock “can become partially localized in 
the interfacial region due to surface roughness or within the bulk 
part of the solid due to a multimineral frame.” Both features 
constitute violations of Gassmann’s assumptions. We further 
suggest that cracks present in a rock act as focal points for partial 
localization of deformational energy and contribute to the soften-
ing effect as compared to the behavior postulated in Gassmann’s 
theory. Some of this softening may be explained in part by fluid 
flowing out of the compliant cracks into stiffer pores, a phenom-
enon often referred to as local or squirt flow effect. In their 
generalized poroelasticity framework for micro-inhomogeneous 
rocks, Müller and Sahay (2016) highlight the need to express 
the homogeneity parameter in terms of measurable quantities to 
be of any use in practice. Based on equations 5a, 5b, 7a, and 7b, 
the homogeneity parameter can be conveniently reformulated as 
a function of measurable effective stress and quantifiable crack 
density and volumetric pore-shape factor:

Figure 3. Example of a 23±1% porosity overpressured oil sandstone reservoir transitioning 
to a water leg below 2270 ft. Measured sonic P- and S-wave velocities are shown in green. 
The blue curves represent the fully brine-saturated reservoir interval using Gassmann’s 
equation (dark blue) and equations 6, 7a, and 7b (light blue), showing a difference of up to 
0.1 km/s or 3%.
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n =    ψ – ϕ _____ 
 β ′   – ϕ

    =   [1 +   
A ( ν  m  )  c  2  exp (–dσ) 

  __________ 
p – 1

  ]  
-1

,               (8)

where c2 is the slope of the linear function of porosity used to model 
η0. By definition, n varies according to the difference between the 
bulk volume effective pressure coefficient of a microheterogeneous 
rock (ψ = 1 – Kd /KM) and the Biot coefficient of a microheteroge-
neous rock (β' = 1 – Kd/Km' ). In the case of microhomogeneous 
rocks with no cracks or microheterogeneous rocks with cracks 
subjected to pressures higher than the closure pressure, both 
coefficients reduce to the familiar form 1 – Kd/Km and therefore 
n = 1. In contrast, for microheterogeneous rocks with cracks sub-
jected to pressures lower than the closure pressure, KM < Km' , 
leading to n < 1. This effect is illustrated in Figure 4a, which shows 
how larger zero-stress crack density and lower effective stress 
reduce n in a 23% porosity sandstone with an average pore-shape 
factor p of 7.1. Figure 4b highlights how, for the same sandstone 
with relatively high zero-stress crack density η0 of 0.66, an increase 
in effective stress from 5 to 55 MPa reduces its effective crack 
density and increases its homogeneity parameter, resulting in a 
state ever closer to Gassmann’s compliance. Note that the proposed 
model only accounts for the elastic crack closure. If the increase 
in effective or deviatoric stress causes inelastic deformation, such 
as grain sliding and crushing, the homogeneity parameter can start 
diverging away from Gassmann’s compliance, as observed in 
published laboratory data (Figure 1 in Müller and Sahay [2016]).

Thomsen (2020) and Müller and Sahay (2014) suggest that 
the assessment of Gassmann’s applicability is primarily depen-
dent on the ability to determine Skempton’s B coefficient based 
on laboratory quasi-static deformation experiments, which 
present many challenges of their own and are not common. 
Based on equation 8, we suggest again that much more routine, 
straightforward, and less controversial laboratory measurements 
of velocities versus stress obtained on dry reservoir rocks are 

sufficient to calibrate the crack density 
parameter, derive (optionally) the 
homogeneity parameter, and apply the 
more general Brown-Korringa’s equa-
tion (instead of Gassmann’s equation) 
to perform accurate forward modeling 
for a wide range of reservoir rocks 
under any stress state.

Conclusions
The application of Gassmann’s equa-

tion to estimate fluid effects on P-wave 
velocity in reservoir rocks can be sub-
stantially inaccurate for porous rocks 
with moderate to high crack density. 
This is typically the case when the zero-
stress crack density parameter is high or 
effective stress is low. Although not the 
sole cause of inaccuracy, Gassmann’s 

prediction error is directly affected by the stress sensitivity induced 
by the presence of microcracks in the reservoir rock. Because the 
stress sensitivity can be evaluated using the crack density parameter 
and its exponential decay with effective stress due to crack closure, 
it is not necessary to conduct expensive laboratory experiments to 
obtain Skempton’s coefficient. Instead, we suggest that calibrating 
the Vernik-Kachanov rock physics model to match existing labo-
ratory-measured stress-dependent dry rock velocities may be 
sufficient to quantify Gassmann’s applicability and use the more 
general Brown-Korringa’s fluid substitution equation. Finally, 
evaluating the magnitude of inaccuracies due to the use of simple 
Gassmann-based fluid substitution modeling can be especially 
challenging in forward modeling of seismic and sonic velocities 
when limited information on interval velocity is available to control 
the quality of the modeled P-wave velocity. 
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