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ABSTRACT

In seismic processing and reservoir characterization, we
often need to measure relative displacements between differ-
ent realizations of data. Over the years, many methods have
been developed using different measures of similarity. Such
alignment or warping methods are often effective signal or
image processing tools. However, none of the available
methods are directly driven by the physics of seismic imag-
ing. We have found that a seismic image can be considered
as a field governed by the wave equation. We visualized dif-
ferent image realizations as snapshots of the wavefield at
different times, and these conveyed the required displace-
ments or time shifts. By formulating the problem in a physi-
cal context, we obtained displacements that honored the
directionality of the wave propagation. For example, 4D
time shifts on migrated stacks were obtained in a direction
normal to the reflectors. We have computed these shifts in an
inverted finite-difference scheme. To overcome limitations
of the two-way wave equation in this application, we factor-
ized it to its one-way counterparts. The method was demon-
strated on synthetic and real data sets.

INTRODUCTION

Throughout the seismic processing sequence, and for reservoir
analysis, relative shifts between different data sets are frequently
needed. These shifts can be calculated preimaging, for example,
to reduce the acquisition footprint, or postimaging, for example,
to derive trim statics (Gulunay et al., 2007). Measuring relative dis-
placements between different data realizations is particularly impor-
tant in time-lapse processing in which time shifts may highlight
production-related changes within the reservoir (Williamson et al.,
2007). Over the years, many methods have been developed, often
using local crosscorrelations or other similarity-based methods
(e.g., Hall, 2006; Hale, 2009, 2013; Baek et al., 2014). In its differ-

ent forms, warping is a useful tool to estimate these relative dis-
placements.
Although warping is often an effective image processing tech-

nique, it is not directly driven by the physics of seismic imaging.
The resulting displacement fields may not be unique, and inverting
for geologically induced changes can be difficult. We show that a
seismic image can be considered as a wavefield following a gov-
erning wave equation. Different image realizations, for example,
base and monitor data sets, are visualized as snapshots of a wave-
field at different time steps. These spatially varying time shifts are
then computed in an inverted finite-difference scheme in which the
wavefield is fully known, but the step value is not.
To estimate the wavefield at a given time, the two-way wave

equation requires at least the knowledge of the wavefield at the
two preceding time steps. This is not readily available in an image
warping context. We solve this issue by factorizing the two-way
wave equation into its one-way counterparts.

THEORY

Reverse time migration (RTM) (Baysal et al., 1983; McMechan,
1983; Whitmore, 1983) is an indispensable imaging tool, particu-
larly in complex geologies. One limitation of RTM is that producing
angle gathers is not straightforward. Sava and Fomel (2006) derive a
relationship that couples reflection angle to temporal frequency, im-
age wavenumber, and the medium velocity:

4 cos2ðθÞ
c2ðxÞ ω2 ¼ jkj2; (1)

where x ¼ ðx; y; zÞ is the space coordinate vector, cðxÞ is the veloc-
ity of the medium, θ is the reflection angle between the source
and the receiver wavefields, ω is the angular frequency, and
k ¼ ðkx; ky; kzÞ is the wavenumber vector of the imaged data.
Equation 1 is derived using a purely geometric consideration of

source and receiver wavefields, and it is applicable in many contexts
different from RTM angle gather generation, for example, it is used
to remove RTM low-frequency artifacts (Zhang and Sun, 2009).
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This relationship also holds for other migration methods, such as the
Kirchhoff (Schneider, 1978; Gray and May, 1994) and Beam (Hill,
2001) methods. The theory of wavenumber scattering within the
Born approximation is discussed by Wu and Toksoz (1987).
If equation 1 is considered in a domain in which the reflection

angle is stationary, i.e., a common reflection angle section, the re-
lationship readily translates into a dispersion relation for a new
wave equation:

1

v2θðxÞ
∂2t pθðx; tÞ ¼ ∇2pθðx; tÞ; (2)

where t is the time coordinate, pθ represents the wavefield of the
seismic image at one reflection angle, ∇2 is the Laplacian operator,
and vθðxÞ is given by

vθðxÞ ¼
1

2

cðxÞ
cosðθÞ : (3)

Equation 2 demonstrates that a seismic image from a constant
angle section is the solution of a wave equation, in which the
“velocity” is half that of the original medium velocity divided by
the cosine of the reflection angle. The half factor is associated with
the use of two-way time, whereas the cosine factor represents the
migration stretch. An alternative heuristic derivation of equation 2
using the crosscorrelation imaging condition is given in Appen-
dix A. The concept of viewing seismic images as wavefields has
been explored before in Hubral et al. (1996) in what they call seis-
mic image waves. Mosher et al. (1996) also derive a relationship
similar to equation 2 in their common-angle time migration scheme.
Equation 2 is second order with respect to time; the solution re-

quires the knowledge of the initial state of the wavefield and its
temporal derivative. This information is generally not readily avail-
able within the context of image warping. This practically manifests
itself as the inability of the equation to discriminate between pos-
itive and negative shifts without external information. To overcome
this issue, we factorize equation 2 to its one-way counterparts. We
follow the technique used to derive the Dirac equation (Dirac,
1928). To simplify the notation, we drop the spatial, temporal, and
angle dependency:

1

v
∂tp ¼ �σ:∇p; (4)

where σ is the Pauli vector and σ:∇ is the square root of the Lap-
lacian operator, i.e., the Dirac operator. The derivation of equation 4
and the structure of the Pauli vector and matrices are given in
Appendix B.
The bold notation of the image wavefield p in equation 4 denotes

that it is now considered as a dual-component complex vector in a
quantum mechanical context defined as a spinor. To relate the ob-
served image wavefield to the spinor space, the wavefield is pro-
jected onto the eigenspace of the Dirac operator:

p ¼ K½p�; (5)

where K is the eigenspace projection operator; this operator and the
eigenvectors are defined in Appendix C.
Equation 4 is first order in time, and a simple finite-difference

discretization scheme may be defined as

1

v
δp
Δt

¼ �σ:∇p; (6)

and

δp ¼ p�Δt − p; (7)

where p�Δt is the image wavefield propagated for a duration of
�Δt. The choice of sign is arbitrary, and is only a matter of con-
venience.
In the context of image warping, we are interested in finding the

spatially variable time shift Δt rather than the propagating wave-
fields. To compute the time shift, we rearrange equation 6 and find
the least-squares solution:

Δt ¼ 1

v
R

� �ðσ:∇pÞHðδpÞ
ðσ:∇pÞHðσ:∇pÞ þ ε2

�
; (8)

where ε2 is white noise to avoid divisions by zero, R extracts the
real component of the solution, and the superscript H denotes the
Hermitian conjugate. Note that the time shift is spatially vary-
ing: Δt ¼ ΔtðxÞ.
To estimate the time shift between two data sets, we inject the two

images into p and p�Δt using equation 5. The two injected data sets
may represent angle stacks for trim-statics estimation leading to im-
proved focusing, or in a time-lapse context, the data sets may be
base and monitor images leading to a 4D time-shift volume. The
extracted shifts are in the direction normal to the wavefield, which
better represents reservoir-related changes (Thore et al., 2012). In
theory, the technique should be applied on common reflection-angle
volumes. In practice, the migrated stacks can be used directly be-
cause they are often assumed to have a zero reflection angle.
Normally, time shifts required in seismic processing are scalar

quantities, and their direction is not required; however, the
Dirac-based wavefield decomposition presented in this article al-
lows us to determine the propagation direction of a wavefield. In
the context of image warping, these are the dips of imaged reflec-
tors. This is given by the vector u ¼ ðux; uy; uzÞ defined in
Appendix B.

EXAMPLES

Computing 3D displacement shifts for dipping
reflectors

First, we demonstrate the method with a simple synthetic data set.
The image is composed of four dipping reflectors. Two realizations
are generated, with positive and negative 5-m displacements in the
vertical direction. The normal displacement is the vertical displace-
ment multiplied by the cosine of the dip angle. Figure 1 shows the
resulting displacement shifts and their application. The normal
shifts are correctly estimated by the method, and they completely
remove the difference energy when applied to the input data sets.
The orientation of the shifts is also calculated and demonstrated by
the solid black lines in Figure 1c.

A real time-lapse data set from the North Sea

In this example, we demonstrate the method on two vintages
from a North Sea data set. The structure is complex and contains
steeply dipping flanks of a salt body. Figure 2 shows the two data
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sets, and the 4D difference sections before and after the relative time
shifts are applied. The 4D difference section after applying the shifts
is cleaner confirming that the process is correctly estimating the
relative shifts. Figure 3 shows these estimated
time shifts with the 4D difference overlaid on
the top. The correlation between the shifts and
the difference energy is observed. The shifts
are also oriented toward the direction of the seis-
mic reflectors as expected.

NUMERICAL IMPLEMENTATION

Naïve implementation of the proposed method
may lead to unstable or inaccurate results. At its
heart, the method is a finite-difference scheme
that inherits all the limitations of discretized ap-
proximations of the wave equation. Stability
criteria such as the Courant-Friedrichs-Lewy
criterion and numerical dispersion effects have
to be considered. Robertsson et al. (2012) pro-
vide an extensive list of references on the accu-
racy and stability of finite-difference methods.
These issues may appear as cycle skipping. A
multiscale strategy similar to Bunks et al.
(1995) helps in avoiding most of these difficul-
ties. Lower wavenumbers are addressed first,
then gradually moving onto higher scales.
Most warping methods based on the energy

minimization are not necessarily symmetric with
respect to the two data sets being processed. De-
pending on which data set is being used as a
reference, the estimated time shifts vary. The pre-
sented method is no exception. The nonsymmet-
ric nature arises due to the noise in the images
and genuine amplitude differences. Constraining
the least-squares problem to enforce reciprocity
overcomes these effects.

DISCUSSION

Throughout this article, we discuss relative
shift estimation between data sets using an in-
verted finite-difference approach. In this strategy,
both data sets are viewed as snapshots of the
same image wavefield. Alternatively, each image
wavefield can be propagated independently and
time shifts between different image realizations
are extracted along the newly formed time axis.
Each strategy has its merits; although the in-
verted finite-difference scheme is efficient, the
independent propagation approach enables the
use of traditional well-established 1D methods.
Concepts such as time-strain (temporal derivative
of the time shifts) inversion are easily applicable.
In practice, the migrated stacks can be used

directly in the presented framework because they
are often assumed to have a zero reflection angle.
When the method is used on prestack data,
for example, to compute residual moveout on
common-angle gathers for a tomographic update,

the shifts from each angle stack are altered according to the angle-
dependent propagation velocity. This ensures that the angle volumes
are treated properly, taking into account the migration stretch and

Figure 1. A synthetic data set composed of four dipping layers. (a) The base data set.
(b) The monitor data set, generated by applying positive and negative 5-m shifts in the
vertical direction. (c) The estimated normal displacements: These correctly match theo-
retical values (�5 m) cos (dip angle) and the solid black lines show their orientation.
(d) The difference between panels (a and b). (e) The difference after applying the esti-
mated shifts to panel (b).

Figure 2. A real data set from the North Sea: (a) the base data set, (b) the monitor data
set, (c) the 4D difference section between the base and monitor data sets, and (d) the 4D
difference section after applying the estimated shifts.
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the fact that the time shift depends on the scattering angle. One
shortcoming of the method is that it does not incorporate anisotropy.

CONCLUSIONS

We have developed a new approach to image warping that is
based on the physics of seismic imaging. By formulating the prob-
lem in the context of wavefield propagation, displacements are ob-
tained normal to the wavefronts unlike in conventional techniques,
such as 1D warping. Effectively, the method acts as a wavefield-
driven refocusing operation on seismic images; therefore, it is fa-
vorable in terms of preserving the true characteristics of the data,
such as spectral content and amplitude. The effectiveness is dem-
onstrated on real and synthetic data sets.
The concept of visualizing the seismic image as a wavefield is

applicable to other domains, for example, in a velocity model up-
date setting. Factorization of the wave equation has other potential
applications, for example, in RTM imaging and 3D angle gather
generation.
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APPENDIX A

DERIVATION OF THE ANGLE-DOMAIN IMAGE
WAVE EQUATION

In seismic migration, the image is formed by propagating source
and receiver wavefields and then applying the imaging condition.
Commonly, the crosscorrelation imaging condition is used as
follows:

pIðx;ωÞ ¼ pSðx;ωÞpH
R ðx;ωÞ; (A-1)

where pI , pS, and pR are the image, source, and
receiver wavefields, respectively.
Applying the Laplacian to both sides of equa-

tion A-1 provides the following equation:

∇2pI ¼ pS∇2pH
R þ pH

R∇2pS

þ 2∇pS:∇pH
R : (A-2)

The source and receiver wavefields satisfy the
wave equation; that is,

−ω2

c2
pS ¼ ∇2pS;

−ω2

c2
pR ¼ ∇2pR:

(A-3)

Substituting equation A-3 into A-2 gives

∇2pI ¼ −2
ω2

c2
pSpH

R þ 2∇pS:∇pH
R : (A-4)

Now, we define the quantity cosð2θÞ as follows:

cosð2θÞ ≡ c2∇pS:∇pH
R

−ω2pSpH
R

: (A-5)

Substituting equations A-1 and A-5 into equation A-4, we have

∇2pI ¼ −2
ω2

c2
pI − 2

ω2

c2
cosð2θÞpI: (A-6)

Expanding equation A-6 using the double-angle rule gives

∇2pI ¼ −4
ω2

c2
cos2ðθÞpI: (A-7)

Equation A-7 can then be written as

∇2pI ¼
1

v2θ
∂2t pI; vθ ¼

1

2

c
cosðθÞ : (A-8)

Equation A-8 shows that the image is a solution of a wave equation.
Now, we need to verify that θ in relationship A-5 indeed represents
the reflection angle.
The source and receiver wavefields can be viewed as a superpo-

sition of plane waves; that is,

pSðx;ωÞ ¼
Z

PSðkS;ωÞeþikS:xdkS;

pRðx;ωÞ ¼
Z

PRðkR;ωÞeþikR:xdkR; (A-9)

where kS and kR are the source and receiver wavenumber vectors,
respectively.

Figure 3. The 4D difference section overlaid on the top of the estimated time shifts.
(a) Before applying the shifts and (b) after applying the shifts.
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Substituting equation A-9 into equation A-5, we have

cosð2θÞ ¼
R
ikS · ikRPSPH

R e
þikS:x−ikR:xdkSdkR�R

iω
c PSeþikS:xdkS

��R
iω
c P

H
R e

−ikR:xdkR
� :

(A-10)

Note that the integration is performed only over the region defined
by k ¼ kS þ kR, where k is the image wavenumber vector. The
source and receiver wavefields satisfy the wave equation and its
dispersion relation; therefore, equation A-10 can be written as

cosð2θÞ ¼
R
kS:kRPSPH

R e
þikS:x−ikR:xdkSdkRR jkSjjkRjPSPH

R e
þikS:x−ikR:xdkSdkR

: (A-11)

For any given source and receiver wavenumber vectors, the in-
tegrals are dropped, and the equation readily translates to the fa-
mous dot product rule for calculating the angle between two vectors

cosð2θÞ ¼ kS:kR
jkSjjkRj

: (A-12)

Equation A-12 shows that indeed θ in relationship A-5 corresponds
to the reflection angle.

APPENDIX B

THE FACTORIZED WAVE EQUATION AND PAULI
MATRICES

The acoustic source-free two-way wave equation is given by

�
1

c2ðxÞ ∂
2
t − ∇2

�
p ¼ 0. (B-1)

To factorize this wave equation into its one-way counterpart, we
seek an equation of the form

�
1

cðxÞ ∂t −
ffiffiffiffiffiffi
∇2

p ��
1

cðxÞ ∂t þ
ffiffiffiffiffiffi
∇2

p �
p ¼ Γp; (B-2)

where Γ is some form of the reflectivity operator and
ffiffiffiffiffiffi
∇2

p
is the

square root of the Laplacian operator that satisfies the relation

ffiffiffiffiffiffi
∇2

p ffiffiffiffiffiffi
∇2

p
p ¼ ∇2p: (B-3)

An explicit form of the
ffiffiffiffiffiffi
∇2

p
operator cannot be defined for scalar

fields; however, if p is defined as a dual-component complex vector
p, i.e., a spinor, the Dirac operator may take the form

σ:∇ ¼ σx∂x þ σy∂y þ σz∂z; (B-4)

where the Pauli matrices defining this operator are given by

σx ¼
�
0 1

1 0

�
; σy ¼

�
0 −i
i 0

�
; σz ¼

�
1 0

0 −1

�
:

(B-5)

The key properties allowing this formulation are the relations

σiσi ¼ I; σiσj ¼ −σjσi; (B-6)

where subscripts i and j denote any of the three space coordinates.
Using these properties, it is easily verifiable that the Dirac operator
is the square root of the Laplacian operator; that is,

ðσ:∇Þðσ:∇Þp ¼ ∇2p: (B-7)

Rewriting equation B-2 in terms of the Dirac operator leads to

�
1

cðxÞ ∂t − σ:∇
��

1

cðxÞ ∂t þ σ:∇
�
p ¼ −

�
σ ·

∇c
c

�
1

c
∂tp:

(B-8)

The coupling term on the right side of the equation is a function of
the velocity gradient, and it is interpreted as a reflectivity operator.
Because we are not interested in generating internal reflections, we
set the coupling term to zero; thus the equation can now be easily
factorized into the one-way form:

�
1

cðxÞ ∂t � σ:∇
�
p ¼ 0: (B-9)

Equation B-9 can also be written in its second-order form as

�
1

c2ðxÞ ∂
2
t − ∇2

�
p ¼ � σ:∇cðxÞ

cðxÞ σ:∇p: (B-10)

This equation has the same structure as equation B-1, except for the
right-side term. This term attenuates velocity contrast-related reflec-
tions. This property is favorable in an RTM setting in which these
reflections cause low-frequency artifacts in the formed image.
Equation B-10 is equivalent to equations B-9 and B-8 (with the

reflection term set to zero) but due to its second-order nature and
similarity with the conventional wave equation, it is numerically
favorable in terms of finite-difference behavior.
Equation B-4 shows that Pauli matrices correspond to unit vec-

tors in the three spatial dimensions, i.e., these matrices act as the
vector basis that defines space. In analogy to quantum mechanical
expectation operators (Wachter and Hoeber, 2006), we propose that
the wavefield propagation direction can be calculated by forming
inner products using these matrices

ux ¼
pHσxp
pHp

; uy ¼
pHσyp

pHp
; uz ¼

pHσzp
pHp

; (B-11)

where ux, uy, and uz are the propagation directions of the wavefield.
These equations may then be used in an RTM 3D angle-gather gen-
eration setting in which the relationship is applied to source and
receiver wavefields, or to determine the orientation of the estimated
shifts in the proposed warping scheme in which the relationship is
applied to the image wavefield.
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APPENDIX C

EIGENVECTORS OF THE DIRAC OPERATOR

The eigenvalues and vectors of the Dirac operator can be com-
puted by operating in the wavenumber domain; this is similar to the
approach followed by Hokstad and Mittet (1999) for their depth
extrapolation scheme:

σ:∇p ≡
�
ikz ikx þ ky
ikx − ky −ikz

�
p: (C-1)

The eigenvalues are given by

k ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
: (C-2)

The eigenvectors for positive and negative eigenvalues, respec-
tively, are given by

Ψþ ¼
�

1
ikx−ky

ikzþijkjsgnðkzÞ

�
; Ψ− ¼

� −ikx−ky
ikzþijkjsgnðkzÞ

1

�
: (C-3)

The signum function sets the sign convention; i.e., the sign of
propagation direction is defined by the sign of the depth wave-
number.
Projecting an observed image wavefield onto the eigenvectors is

defined by the relation

pðxÞ ¼ K½p� ≡
Z

dke−ik:x
1

kΨ�k
Ψ�ðkÞ × pðkÞ: (C-4)

Both eigenvectors can be used in equation C-4. The sign of the re-
sulting time shift depends on the choice.
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