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ABSTRACT

We have developed an efficient convex optimization strat-
egy enabling the simultaneous attenuation of random and
erratic noise with interpolation in prestack seismic data.
For a particular analysis window, frequency slice spatial data
were reorganized into a block Toeplitz matrix with Toeplitz
blocks as in Cadzow/singular spectrum analysis methods.
The signal and erratic noise were, respectively, modeled
as low-rank and sparse components of this matrix, and then
a joint low-rank and sparse inversion (JLRSI) enabled us to
recover the low-rank signal component from noisy and in-
complete data thanks to joint minimization of a nuclear norm
term and an L1-norm term. The convex optimization frame-
work, related to recent developments in the field of com-
pressed sensing, enabled the formulation of a well-posed
problem as well as the use of state-of-the-art algorithms.
We proposed an alternating directions method of multipliers
scheme associated with an efficient singular value threshold-
ing kernel. Numerical results on field data illustrated the ef-
fectiveness of the JLRSI approach at recovering missing
data and increasing the signal-to-noise ratio.

INTRODUCTION

Various techniques have been proposed to improve the signal-
to-noise ratio (S/N) of seismic data by attenuating incoherent
noise, including prediction error filtering (Canales, 1984), projec-
tion filtering (Soubaras, 1995), and, more recently, rank-reduction
filtering, which assumes that the signal component of a matrix or
tensor formed from the input data is of low rank. In the last cat-
egory, we can differentiate eigenimage filtering (Trickett, 2003),
Cadzow/singular spectrum analysis (SSA) filtering (Trickett,

2008; Sacchi, 2009), and tensor methods (Kreimer and Sacchi,
2012; Kreimer et al., 2013; Trickett et al., 2013; Da Silva and
Herrmann, 2014). These rank-reduction methods have also been
extended to robust noise attenuation, dealing with erratic noise as
well as data interpolation (Trickett et al., 2010, 2012; Oropeza and
Sacchi, 2011; Aravkin et al., 2014; Chen and Sacchi, 2015). Im-
proving the S/N by noise attenuation and missing trace interpola-
tion is key to certain seismic processes because strong noise and
suboptimal spatial sampling from acquisition constraints can have
an impact on the final migration quality (Trad, 2009). More spe-
cific methods addressing the problem of recovery from incomplete
data include Fourier-based techniques such as the minimum
weighted-norm interpolation (MWNI) (Liu and Sacchi, 2004;
Trad, 2009) and the antileakage Fourier transform (ALFT), which
handles irregularly sampled data by honoring the real spatial co-
ordinates (Xu et al., 2005, 2010; Poole, 2010), projection onto
convex sets (POCS) (Abma and Kabir, 2006), and techniques
based on local transforms such as the Radon transform (Trad et al.,
2002) or the curvelet transform (Herrmann and Hennenfent, 2008;
Hennenfent et al., 2010). Such advances have been fueled by the
recent and increasing use in the geophysical community of com-
pressed sensing (Herrmann, 2010; Herrmann et al., 2013; Aravkin
et al., 2014) and advanced convex optimization techniques (Pham
et al., 2014). Regarding reconstruction methods, the main
assumption is that a structured signal is inherently sparse or
low-rank in a certain domain, so that limited measurements in
the physical domain still hold enough information to accurately
recover the signal.
In this paper, we take a new look at the signal model stemming

from Cadzow/SSA techniques in which the coherent signal is mod-
eled as a low-rank component of the so-called trajectory matrix, the
latter being a Hankel or Toeplitz matrix (or block Hankel/Toeplitz
with Hankel/Toeplitz blocks in the case of several spatial dimen-
sions) formed from data in the temporal Fourier domain. We model
erratic noise as sparse elements of this matrix: In the temporal
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Fourier domain, erratic noise can be either localized amplitude
anomalies or phase distortions (Trickett et al., 2012). Erratic noise
needs to be explicitly taken into account because traditional least-
squares filtering approaches making use of the L2-norm such as
Cadzow/SSA are highly sensitive to corrupted data with high-am-
plitude, non-Gaussian noise. We formulate the simultaneous ran-
dom plus erratic noise attenuation with interpolation problem as
a joint low-rank and sparse inversion (JLRSI) convex optimization
problem, in which the low-rank signal component is recovered and
separated from the sparse erratic noise component thanks to joint
minimization of a nuclear norm term and an L1-norm term, con-
strained by the fit to the available, incomplete data. The nuclear
norm of a matrix is the sum of its singular values, and it can be
considered for rank minimization problems as an equivalent of
the L1-norm enhancing sparsity in compressed sensing (Chandra-
sekaran et al., 2012). This systematic formulation is motivated by
recent progress in matrix completion and rank minimization (Can-
dès and Recht, 2008; Candès and Tao, 2009; Recht et al., 2010) and
more specifically principal component pursuit or robust principal
component analysis problems, i.e., low-rank plus sparse decompo-
sitions (Candès et al., 2009; Wright et al., 2009; Chandrasekaran
et al., 2011). Our JLRSI formulation can be seen as an extension
of the stable principal component pursuit (Zhou et al., 2010) and
compressive principal component pursuit (Wright et al., 2013)
problems, in which observed data are noisy and incomplete (see
Candès and Plan [2009] for matrix completion with noise), and
the low-rank component has a Hankel/Toeplitz structure (see Fazel
et al. [2013] for rank minimization of such matrices). Some of the
aforementioned references include strong theoretical results based
on weak assumptions on the input data and its structure, in addition
to providing an elegant framework to formulate our problem as a
convex semidefinite program (Vandenberghe and Boyd, 1996;
Boyd and Vandenberghe, 2004).
We propose to solve the resulting convex optimization

problem for each temporal frequency slice with an efficient alter-
nating direction method of multipliers (ADMM) scheme (Wen
et al., 2010; Boyd et al., 2011; Tao and Yuan, 2011), which iter-
atively estimates and recovers the missing entries of the low-rank
signal component of the trajectory matrix, while at the same time
characterizing erratic noise as a sparse component. The inner up-
dates within an ADMM iteration amount to evaluating so-called
proximal operators (Moreau, 1965; Combettes and Pesquet, 2011;
Parikh and Boyd, 2013), of which the one associated with the nu-
clear norm term, singular value thresholding, is the costliest be-
cause it involves a singular value decomposition (SVD) of a
Hankel/Toeplitz matrix. Because only the leading terms are
needed, we make use of an efficient scheme based on fast Toeplitz
(or block Toeplitz with Toeplitz blocks [BTTB]) matrix-vector
products (Lee, 1986; Strang, 1986; Van Loan, 1992), recently
proposed by Korobeynikov (2010) and used for seismic data filter-
ing and reconstruction purposes by Trickett (2003) and Gao
et al. (2013).

This article is organized as follows: First, we expose the motiva-
tion behind the Cadzow/SSA signal model; second, we formulate
our problem as a well-posed convex program; and third, we describe
the ADMM algorithm enabling us to solve the latter efficiently. The
effectiveness of our approach is subsequently demonstrated on real
data examples, and finally Appendices A and B provide additional
details concerning the singular value thresholding step.

THEORY

Modeling in the f-x domain

We work from the assumption that the signal is predictable in the
f-x domain. Here, f represents the temporal frequency and x the
spatial dimensions, such as shot-receiver coordinates, midpoint co-
ordinates, offset vector components, offset, or azimuth. In our ap-
plications, we will work in up to four spatial dimensions, although
in theory, the algorithm can be extended to as many spatial dimen-
sions as one deems necessary. For the sake of clarity, in the spirit of
the exposition in Sacchi (2009), let us start with the case of one
spatial dimension, in which a signal composed of a single dip
can be represented as

sðt; xÞ ¼ uðt − pxÞ (1)

in the time domain and as

Sðω; xÞ ¼ UðωÞeiωpx (2)

in the f-x domain. Thus, for regularly sampled data at xn ¼ nΔx for
n ∈ N and a fixed frequency ωk,

SðkÞn ¼ Sðωk; xkÞ ¼ UðωkÞeiωkpxn ¼ eiωkpΔxSðkÞn−1: (3)

This last recursive relation, showing the signal predictability
assumption, is used in various kinds of f‐x deconvolution and filter-
ing algorithms.
For our purposes, we introduce some useful notations. Working

frequency by frequency and dropping the superscript k, let the tra-
jectory matrix be H as follows for a window of five traces and a
frequency slice S ¼ ðS1; : : : ; S5Þ:

HðSÞ ¼
0
@ S1 S2 S3

S2 S3 S4
S3 S4 S5

1
A: (4)

From the predictability assumption, one can see that for a single
dipping event, the columns of the trajectory matrix are scaled ver-
sions of each other, and thus, HðSÞ has rank 1. Hence, a noiseless
data set that is the sum of k-plane waves results in a trajectory ma-
trix having at most rank k. This observation is used by Cadzow/SSA
filtering (Trickett, 2008; Sacchi, 2009), which attenuates random
noise in the recorded data D by reducing the rank of the trajectory
matrix TðDÞ via an SVD, discarding the smaller singular values.
The resulting matrix is then averaged along its antidiagonals to yield
the denoised signal S. This procedure was previously described in
the dynamical systems community (Broomhead and King, 1986), in
the signal processing community as Cadzow’s method (Cadzow,
1988) in which the SVD truncation and averaging process is re-
peated, and in statistics and climatic time series analysis as SSA
(Vautard and Ghil, 1989; Plaut and Vautard, 1993; Ghil et al.,
2002; Golyandina and Zhigljavsky, 2013).
The trajectory matrix has a Hankel structure; for convenience,

from now on we will work with the following “equivalent” Toeplitz
matrix:
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TðSÞ ¼
0
@ S3 S2 S1

S4 S3 S2
S5 S4 S3

1
A: (5)

Because the order of matrix rows or columns does not affect the
rank, it is strictly a matter of convenience whether we form Hankel
or Toeplitz matrices. The matrix TðSÞ is square of dimension ðN þ
1Þ∕2 for a window of N traces if N is odd, and it is rectangular of
size N∕2 × ðN∕2þ 1Þ if N is even.

The extension to several spatial dimensions amounts to building
block Toeplitz matrices with Toeplitz blocks (BTTB matrices) of an
order corresponding to the additional spatial dimensions. For in-
stance, for two spatial dimensions, we have

TðSÞ ¼
0
@T3 T2 T1

T4 T3 T2

T5 T4 T3

1
A; (6)

where each Ti is a Toeplitz matrix. For additional spatial dimen-
sions, the Ti matrices would be recursively replaced by BTTB ma-
trices. More details on how to build BTTB matrices can be found in
the literature, e.g., in Oropeza and Sacchi (2011) and Gao et al.
(2013) in which the term multichannel SSA is used when working
with additional dimensions. Adding spatial dimensions allows for a
better characterization of the signal coherency along those dimen-
sions, leading to a better separation from incoherent, random noise.
Cadzow/SSA denoising is then performed by forming the Toe-

plitz or BTTB matrix TðDÞ from the input frequency slice D; taking
the SVD of the matrix; discarding the smaller singular values to
yield TRRðDÞ; and finally averaging along the (block) diagonals
of the resulting matrix, yielding S ¼ T ½TRRðDÞ�, where T ½·� is
the averaging operator. This process should possibly be repeated
in the case of Cadzow filtering (Cadzow, 1988). Once all frequency
slices have been processed, the original block in the time domain is
retrieved via an inverse Fourier transform.

Convex formulation of the problem

Let us start by reformulating the previous problem, i.e., random
noise attenuation in the recorded data via Cadzow/SSA filtering.
For an assumed level of random noise δ such that D ¼ Sþ Zδ,
where Zδ represents the additive random noise, we have

minimize rankðTðSÞÞ subject to kD − Sk2 ≤ δ; (7)

where k · k2 is the entrywise sum of squares norm. Although clearly
nonconvex, this specific problem is easily dealt with by using the
SVD of the matrix TðDÞ.

Now, let us assume that recorded data D are also incomplete and
corrupted by erratic noise; in the f-x domain, erratic noise amounts
to spike bursts or localized phase distortions. We encode the avail-
able information by the sampling operator PΩ½·�, where ðPΩ½X�Þi ¼
Xi if i ∈ Ω and 0 otherwise. The signal model becomes
D ¼ PΩ½Sþ Eþ Zδ�, where E represents erratic noise, and apply-
ing the Cadzow/SSA procedure described above directly to TðDÞ
would yield incorrect results because the SVD is optimal only in
the least-squares sense, and thus it is very sensitive to outliers
and missing data. Iterative schemes have been previously suggested
to extend Cadzow/SSA filtering to either erratic noise attenuation or
interpolation (Trickett et al., 2010, 2012; Oropeza and Sacchi,

2011) using POCS-like ideas and robust statistics, although none
are in in a theoretical framework enabling simultaneous interpola-
tion and erratic noise attenuation, along with the use of modern con-
vex optimization techniques.
Taking into account the missing data via the sampling operator

PΩ½·� and the sparsity of the erratic noise component E as measured
by its number of nonzero components kEk0 (the L0-norm in the
compressed sensing literature, which is none other than the cardi-
nality function), the following problem formulation is better
adapted for the recovery of the true signal subspace:

minimize rank ðTðSÞÞ þ kEk0
subject to kPΩ½D − S − E�k2 ≤ δ:

(8)

This much more difficult problem is intractable in most cases.
Indeed, the rank and cardinality functions are nonconvex and gen-
erally require algorithms running in exponential time to be mini-
mized. Therefore, we seek a solvable surrogate problem. This
can be achieved using a convex relaxation; that is, we “convexify”
the cost function as follows to give the JLRSI problem formulation:

minimize kTðSÞk� þ λkEk1
subject to kPΩ½D − S − E�k2 ≤ δ;

(9)

where k · k� is the nuclear norm, i.e., the sum of the singular values;
k · k1 is the entrywise L1-norm, i.e., the sum of absolute values; and
λ is a regularization parameter. This is a convex optimization prob-
lem, and although it is nonsmooth, it can be solved efficiently as it
will be seen in the next section.
Let us now develop the motivation and the benefits behind this

“convexification” before dealing with the description of the pro-
posed ADMM algorithm. The L1-norm is well known and was used
by geophysicists as early as the 1970s and 1980s to deal with erratic
data (Claerbout and Muir, 1973; Taylor et al., 1979) and sparse in-
version (see Trad et al. [2003] for a review concerning the sparse
Radon transform). However, it is only recently with the appearance
and expansion of the compressed sensing field (Candès et al.,
2006a, 2006b) that a solid mathematical framework emerged: Math-
ematicians proved the well posedness of such problems, with the
L1-norm acting as a well-behaved proxy for the cardinality func-
tion. The nuclear norm heuristic for rank minimization was first in-
troduced in the control community (Fazel et al., 2001), and it was
not long before mathematicians unearthed conditions for optimal
solutions and recovery for matrix completion problems (Candès
and Recht, 2008; Candès and Tao, 2009; Recht et al., 2010). Mo-
tivated by this newly developed framework and the shortcomings of
classical principal component analysis with outliers, researchers
studied the principal component pursuit or robust principal compo-
nent analysis problem, i.e., the problem of separating a matrix into a
sum of a low-rank component and a sparse component (Candès
et al., 2009; Wright et al., 2009; Chandrasekaran et al., 2011).
Those works include strong theoretical results under various con-
ditions on the matrix structure (for instance, one cannot expect to
separate matrices that are low rank and sparse) and have been ex-
tended to cases in which available data are limited and/or contami-
nated with random noise (Zhou et al., 2010; Wright et al., 2013),
helped by developments on sparse recovery and matrix completion
problems (Candès et al., 2006b; Candès and Plan, 2009). In all those
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advances, convex relaxations and mathematical arguments rooted in
high-dimensional geometry and functional analysis are essential in-
gredients, and we let the reader further delve into the provided refer-
ences to appreciate those achievements and the underlying proofs.
We end this interesting detour by mentioning recent developments
(Andersson et al., 2014; Condat and Hirabayashi, 2015) in the sig-
nal processing community regarding the spectral estimation prob-
lem, for which the Cadzow denoising method was originally
proposed. In these works, in contrast to Fazel et al. (2013), Han-
kel/Toeplitz matrices are constrained to be low rank without convex
relaxations.
The principal component pursuit problem inspired our JLRSI

convex formulation, in which the low-rank signal component takes
the form of a trajectory matrix in the vein of the Cadzow/SSA
model. We could have directly applied the principal component pur-
suit theory to the trajectory matrix formed from the input data;
although in addition to the added redundancy, it would have been
algorithmically less efficient because in the proposed algorithm, the
trajectory matrix is actually never formed nor stored in memory.
Finally, the following equivalent formulation to equation 9 (see Ay-
bat et al. [2014] for an adaptable proof) will be used in the sub-
sequent sections for convenience purposes:

minimize kTðSÞk� þ λkPΩ½E�k1
subject to PΩ½D� ¼ Sþ Eþ Z; kZk2 ≤ δ:

(10)

Alternating directions method of multipliers algorithm
and proximal operators

The JLRSI convex program formulated previously can be
solved by specialized techniques for nonlinear programming such
as interior-point methods (Boyd and Vandenberghe, 2004; Noce-
dal and Wright, 2006), but those second-order schemes become
prohibitively expensive for trajectory matrices of practical size.
Therefore, we suggest the use of a fast first-order scheme, con-
verging quickly to a more modest accuracy compared to sec-
ond-order schemes, which in our case is sufficient. Such first-
order schemes include, among others: Nesterov’s method, accel-
erated proximal gradient , and fast iterative shrinkage-thresholding
(Nesterov, 2005; Beck and Teboulle, 2009), of which specific var-
iants have been developed for principal component pursuit prob-
lems (Ganesh et al., 2009; Aybat et al., 2014). We suggest the use
of the ADMM (Wen et al., 2010; Boyd et al., 2011; Tao and Yuan,
2011) for its simplicity and ease of implementation. ADMM origi-
nated in the seventies (Glowinski and Marroco, 1975; Gabay and
Mercier, 1976) and has since found numerous applications and has
been comprehensively analyzed by many authors, showing close
links with independently developed techniques such as Douglas-
Rachford splitting (Eckstein and Bertsekas, 1992; Combettes and
Pesquet, 2007). Furthermore, it has been recently emphasized that
ADMM is a special case of the broader class of primal-dual proxi-
mal splitting algorithms: The reader is referred to Komodakis and
Pesquet (2014) for a comprehensive review of these methods.
As a starting point, the variable splitting performed in equation 10

for our problem leads to the following augmented Lagrangian for-
mulation:

LðS;E;Z;MÞ ¼ kTðSÞk� þ λkPΩ½E�k1
þ hM; PΩ½D�− S− E−Zi

þ 1

2μ
kPΩ½D�− S −E −Zk22 þ ιfkZk2≤δgðZÞ;

(11)

whereM is the dual-variable or Lagrange multiplier, μ is the param-
eter associated with the added quadratic penalty, and ιCð·Þ is the
characteristic function of the set C: ιCðcÞ ¼ 0 if c ∈ C and þ∞
if c ∈= C. The added quadratic penalty term in equation 11 (justify-
ing the augmented Lagrangian name) aims at “robustifying” the
cost function and solution procedure (Nocedal and Wright,
2006; Boyd et al., 2011). Using this augmented Lagrangian, the
kth iteration of the method of multipliers consists of the following:

ðSkþ1;Ekþ1;Zkþ1Þ ¼ argmin
S;E;Z

LðS;E;Z;MkÞ (12)

and

Mkþ1 ¼ Mk þ 1

μ
ðPΩ½D� − Skþ1 − Ekþ1 − Zkþ1Þ: (13)

In contrast with the method of multipliers, the first subproblem is
hard to solve efficiently because of the nonseparability of the ob-
jective function, which is due to the additional quadratic penalty
term. ADMM enables us to tackle this difficulty by splitting and
updating the variables one at a time before updating the multiplier.
We formulate here the kth ADMM iteration:

Zkþ1 ¼ argmin
Z

LðSk;Ek;Z;MkÞ; (14)

Ekþ1 ¼ argmin
E

LðSk;E;Zkþ1;MkÞ; (15)

Skþ1 ¼ argmin
S

LðS;Ekþ1;Zkþ1;MkÞ; (16)

and

Mkþ1 ¼ Mk þ 1

μ
ðPΩ½D� − Skþ1 − Ekþ1 − Zkþ1Þ: (17)

Unlike the two-variables case, there is currently no strict proof of
convergence for ADMM when the number of updated variables is
three or higher, although there has been some recent effort in this
direction (Chen et al., 2014; Sun et al., 2014). Despite this absence
of a guarantee, the extension works well in some applications, e.g.,
in Tao and Yuan (2011), and satisfactory behavior was observed in
our examples. The entire kth ADMM iteration can finally be rewrit-
ten in the following form, after merging the relevant multiplier term
with the quadratic penalty term:

Zkþ1 ¼ argmin
Z

ιfkZk2≤δgðZÞ

þ 1

2μ
kPΩ½D� − Sk − Ek − Zþ μMkk22; (18)
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Ekþ1 ¼ argmin
E

kPΩ½E�k1

þ 1

2μλ
kPΩ½D� − Sk − E − Zkþ1 þ μMkk22; (19)

Skþ1 ¼ argmin
S

kTðSÞk�

þ 1

2μ
kPΩ½D� − S − Ekþ1 − Zkþ1 þ μMkk22; (20)

and

Mkþ1 ¼ Mk þ 1

μ
ðPΩ½D� − Skþ1 − Ekþ1 − Zkþ1Þ: (21)

The subproblems for Z, E, and S involve the so-called proximal
operators (Moreau, 1965; Combettes and Pesquet, 2011; Parikh and
Boyd, 2013); solving one subproblem is equivalent to evaluating the
proximal operator of a certain function. The proximal operator of a
function f is defined by

proxfðvÞ ¼ argmin
x

fðxÞ þ 1

2
kx − vk22: (22)

Proximal operators enjoy various useful properties and interpre-
tations (Parikh and Boyd, 2013), a noteworthy one being that a
minimizer of a function is a fixed point of its proximal operator.
Those connections enabled the development and analysis of several
convex optimization methods, including ADMM. In this new light,
one can rewrite the subproblems for Z, E, and S as follows:

Zkþ1 ¼ proxμιfk·k2≤δg
ðPΩ½D� − Sk − Ek þ μMkÞ; (23)

Ekþ1 ¼ proxμλkPΩ½·�k1ðPΩ½D� − Sk − Zkþ1 þ μMkÞ; (24)

and

Skþ1 ¼ proxμkTð·Þk� ðPΩ½D� − Ekþ1 − Zkþ1 þ μMkÞ: (25)

Although the functions on which the proximal operator is evalu-
ated are nonsmooth, we fortunately have simple semianalytical for-
mulas that can be derived from the properties of proximal operators
(Combettes and Pesquet, 2011; Parikh and Boyd, 2013). Concern-
ing the characteristic function ιfk·k2≤δg of an Euclidean norm ball,
the proximal operator reduces to the projection operator:

proxιfk·k2≤δg
ðvÞ ¼ Πfk·k2≤δgðvÞ ¼ argmin

kxk2≤δ
kx − vk2

¼ minðkvk2; δÞ
kvk2

v: (26)

For the entrywise L1-norm, the operation applied is soft thresh-
olding as

ðproxαk·k1ðAÞÞi ¼
Ai

jAij
maxðjAij − α; 0Þ; (27)

and for the nuclear norm, we apply the singular value thresholding
operator as

proxβk·k�ðBÞ ¼
Xn
i¼1

maxðσi − β; 0ÞuivTi ; (28)

where B ¼ P
n
i¼1 σiuiv

T
i is the SVD of B. Using the properties of

proximal operators in conjunction with the previous formulas, the
resulting ADMM iterations can be written as follows:

Initialization : Z0 ¼ 0;E0 ¼ 0; S0 ¼ 0;M0 ¼ D∕kDk2:

Zkþ1 ¼ minðkVk2; δÞ
kVk2

V;

with V ¼ PΩ½D� − Sk − Ek þ μMk; (29)

ðEkþ1Þi¼

8>>><
>>>:

Ai
jAijmaxðjAij−μλ;0Þ if i∈Ω

Ai otherwise;

withA¼PΩ½D�−Sk−Zkþ1þμMk;

(30)

Skþ1 ¼ T
�X

r

maxðσr − μ; 0ÞurvTr
�
;

where TðPΩ½D� − Ekþ1 − Zkþ1 þ μMkÞ
¼

X
r

σrurvTr is an SVD; (31)

and

Mkþ1 ¼ Mk þ 1

μ
ðPΩ½D� − Skþ1 − Ekþ1 − Zkþ1Þ: (32)

Iterations are stopped when kSkþ1 − Skk2 þ kEkþ1 − Ekk2 ≤ ε for
user-defined ε or when a prescribed maximum number of iterations
is reached. We recall that Tð·Þ is the operator tranforming a fre-
quency slice into a Toeplitz (or BTTB) matrix and T ½·� is its adjoint
operator, averaging the (block) diagonals of a Toeplitz (BTTB)
matrix.
Because Z;E;M updates require OðNÞ floating point operations

and storage for a window of N traces, the computational cost per
iteration is dominated by the S update, which involves an SVD. In
the appendices, we will describe how this step can be carried out
efficiently inOðN log NÞ floating point operations withOðNÞ stor-
age thanks to the low-rank requirements and the Toeplitz (BTTB)
matrix structure, enabling fast matrix-vector products (Lee, 1986;
Strang, 1986; Van Loan, 1992; Korobeynikov, 2010; Gao et al.,
2013) to be used in a robust randomized SVD scheme (Halko et al.,
2011; Martinsson et al., 2011), without explicitly forming nor stor-
ing in memory Toeplitz (BTTB) matrices.

NUMERICAL EXAMPLES

In the following numerical examples, in the spirit of Candès et al.
(2009), we used λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∕jΩjnmax

p
and μ ¼ 4kPΩ½D�k1∕jΩj, where

in the analysis window, jΩj is the number of observed traces, N is
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the total number of traces including the ones to be interpolated, nmax

is the maximum extent of the spatial dimensions, and D is the input
frequency slice. The number of relevant singular values to be cal-
culated by the scheme described in the appendix was determined

adaptively by examining the smallest computed singular values
at each iteration, and testing showed that a maximum of a few tens
of ADMM iterations were sufficient to reach the convergence.
We first apply the proposed JLRSI method to a land data set ar-

ranged in 36 common offset-vector (COV) vol-
umes (Cary, 1999; Vermeer, 2000) corrected for
normal moveout (NMO), with inline and cross-
line increments of 15 m. In this example, we used
a total of four spatial dimensions: inline, cross-
line, and both components of the offset vector.
The processing window extent was 600 ms in
the temporal direction, 30 traces in the inline
and crossline directions, and 4 traces in both
binned offset vector component directions. Fig-
ure 1 shows the original central COV volume and
the stack of the original 36 COV volumes, with
prestack data exhibiting a poor S/N. Then, we
randomly decimated these data to keep 25% of
all original traces in the input prestack volume,
and we randomly added high-amplitude spikes
acting as additional erratic noise. The corrupted
and decimated central COV volume is shown
before and after application of the JLRSI
reconstruction process in Figure 2; one can dis-
cern horizontal events in the reconstructed sec-
tion in contrast to the original section. The
difference between the original and reconstructed
central COV volumes is shown in Figure 3. Fig-
ure 4 shows the stack of the 36 corrupted and
decimated COV volumes before and after JLRSI
recovery. Finally, Figure 5 shows the stack of the
reconstructed COV volumes compared with the
original stack, their difference demonstrating that
JLRSI provides effective noise attenuation and
reconstruction while still preserving the character
of the data, with minimum signal leakage.
Our second example deals with a deep off-

shore marine data set from Angola, of which
we use offset classes with NMO correction.
The inline and crossline increments are 25 and
12.5 m, respectively. Here, we use three spatial
dimensions: the inline number, crossline number,
and offset class number. The processing window
temporal size was 500 ms, and the spatial win-
dow extent was 20 traces in the inline and cross-
line directions and four traces in the offset class
direction. Figures 6 and 7 show a prestack and a
stacked inline section of the original data. Fig-
ures 8 and 9 show the prestack inline section, first
after additional decimation to reach approxi-
mately 75% missing traces in the considered vol-
ume, then after JLRSI reconstruction starting
from the former decimated data. The difference
between the reconstructed and original prestack
inline sections is shown in Figure 10. The stack
corresponding to the same inline section after
decimation is shown in Figure 11, in which
one can easily note the effects of data decimation
and high-amplitude erratic noise. Figure 12

Figure 1. (a) Original central COV volume. The S/N is very low. (b) Stack of the origi-
nal undecimated, uncorrupted COV volumes.

Figure 2. (a) Central COV volume, with 25% traces remaining and random high-am-
plitude spikes added. (b) Decimated central COV volume with added noise spikes after
application of the suggested JLRSI process. The S/N is improved.
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shows the result of JLRSI reconstruction after stacking, and the dif-
ference between the reconstructed and original stacks is shown in
Figure 13. Interpolated and denoised traces are consistent with the
original volume, and diffractions appear to be correctly recon-

structed. Less-aggressive noise attenuation can be obtained by low-
ering the noise threshold, at the expense of an additional
computational cost because more singular values would be needed
to reconstruct the seismic volume.

Figure 3. (a) Original undecimated and uncorrupted central COV volume. (b) Decimated and corrupted central COV volume after JLRSI
reconstruction. (c) Difference (a and b).

Figure 4. (a) Stack of the 36 COV volumes with
25% prestack traces remaining and randomly
added high-amplitude spikes. (b) Stack after si-
multaneous random and erratic noise attenuation
with interpolation of missing traces using JLRSI.
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DISCUSSION

As in other algorithms for seismic data interpolation and denois-
ing, there are variable parameters that need to be adjusted to the

problem at hand. First of all, the temporal and spatial windowing
must be adapted to the bin spacing and offset class interval. Another
parameter of importance is the number of kept singular values,
which depends on the window size. Although the rank of the signal

Figure 5. (a) Stack of the original undecimated, uncorrupted COV volumes. (b) Stack of the decimated and corrupted COV volumes after
JLRSI reconstruction. (c) Difference (a and b).

Figure 6. Original inline section of a prestack offset class. Erratic
traces are noticeable.

Figure 7. Stacked inline section of undecimated original data.
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component is determined adaptively for each frequency via the sin-
gular value soft-thresholding operator, the computational cost is
proportional to the number of calculated singular values in the ran-
domized SVD scheme. If too many singular values are computed,
the computational cost suffers; conversely, if not enough of them are
computed, the algorithm might converge toward a local minimum
because convexity would be lost and the processing will seem
overly aggressive.

Concerning the input data, the best results are obtained with
NMO-corrected data (Trad, 2009). For wide-azimuth land data, per-
forming 5D simultaneous interpolation and denoising using JLRSI
on COV volumes works well in practice (note that 5D interpolation
is done in four spatial dimensions). Instead of both offset vector
components, one can use the offset magnitude and azimuth dimen-
sions in addition to the inline and crossline directions. When deal-
ing with highly irregular data sets, the proposed algorithm does not

Figure 8. Original prestack inline section after decimation to reach
approximately 75% missing traces.

Figure 9. Inline section from Figure 8 after application of the
JLRSI reconstruction process.

Figure 10. Difference between Figure 9 (after reconstruction, pre-
stack) and Figure 6 (original data, prestack).

Figure 11. Stacked inline section of original data. Erratic noise and
sampling artifacts due to data decimation are noticeable.
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have the advantage of methods based on the irregular Fourier trans-
form such as the ALFT (Xu et al., 2005, 2010; Poole, 2010), which
honors the exact trace coordinates, at the expense of the additional
computational burden of computing the irregular Fourier transform
for which the fast Fourier transform (FFT) cannot be directly used.
As an alternative, following Trad (2009) in the case of MWNI, we

can bin the spatial positions into a finer grid to minimize binning
errors and then apply JLRSI on this fine grid. Sparsity of the result-
ing Toeplitz matrices would increase by a large factor, and this is
where compressed sensing takes its whole meaning: Optimal
reconstruction is still possible. On the other hand, the proposed
method is not currently able to exactly reconstruct strongly aliased
data when the original sampling is regular, e.g., for interpolation of
regularly missing traces. For this purpose, a frequency extrapolation
scheme in the spirit of Spitz (1991) and Naghizadeh and Sacchi
(2013) can be used.
A last point is the flexibility of the convex framework: Additional

constraints can be added at little to no cost, as long as their corre-
sponding projection or proximal operator can be evaluated without
difficulty.

CONCLUSIONS

We have formulated the multidimensional prestack seismic data
interpolation with random and erratic noise attenuation problem as a
JLRSI convex program. The signal is characterized for each tem-
poral frequency slice in the f-x domain as a low-rank component of a
Toeplitz or BTTB matrix. We used the signal model pioneered in
Cadzow/SSA filtering methods to benefit from the signal predict-
ability property in the f-x domain, and a powerful convex optimi-
zation framework enables us to formulate a well-posed problem to
reconstruct the low-rank signal component from noisy and incom-
plete data. A joint minimization of the nuclear norm of the signal
component and the L1-norm of the erratic noise component lets us
separate out this erratic noise, avoiding the sensitivity to outliers
that plagues classical approaches.
The proposed solution to the formulated JLRSI convex program

resides in an ADMM algorithm, in which the singular value thresh-
olding step is efficiently carried out thanks to fast Toeplitz/BTTB
matrix-vector products and a robust randomized SVD scheme. Fur-
thermore, the suggested procedure evaluates automatically the op-
timal rank of the recovered signal component for each frequency
slice, in addition to converging quickly to a satisfactory solution.
The effectiveness of our approach at recovering the signal from in-
complete and corrupted data was finally demonstrated on real-data
examples.
Finally, we would like to mention that many of the techniques

used in this paper are based on recent progress in the field of com-
pressed sensing, providing us with elegant frameworks and theoreti-
cal properties on top of state-of-the-art algorithms; we anticipate an
increasing use of such techniques in exploration geophysics.
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APPENDIX A

RANDOMIZED SINGULAR VALUE
DECOMPOSITION ALGORITHM

We saw in the previous sections that an SVD is required to re-
cover the low-rank component of the data. In fact, due to the thresh-

Figure 12. Stacked inline section after application of the JLRSI
reconstruction process. The S/N is improved, and the erratic noise
and sampling artifacts have been eliminated.

Figure 13. Difference between Figure 12 (after reconstruction,
stack) and Figure 7 (original data, stack).
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olding operator, only the first few largest singular values are needed.
If a fast matrix-vector product is available and if the number of rel-
evant singular values of an m × n matrix is much less than
min ðm; nÞ, then it is much more efficient to compute them via al-
ternative methods other than a full decomposition; e.g., Krylov sub-
space methods based on the Lanczos iteration (Golub and Kahan,
1965; Golub and Van Loan, 2013) such as in Trickett (2003), Kor-
obeynikov (2010), Gao et al. (2013), or randomized methods on
which we will focus, already used in Oropeza and Sacchi
(2011), although without the advantages provided by fast matrix-
vector products. Such randomized methods use random projections
to uncover a lower dimensional subspace capturing most of the ac-
tion of a matrix and are competitive in speed and accuracy with
Krylov methods while being conceptually simple, robust, and easily
parallelizable on multiprocessor architectures (Halko et al., 2011).
Here, we make use of Algorithm 1, described and analyzed in Halko
et al. (2011) and Martinsson et al. (2011).

This algorithm requires ð2qþ 2Þðkþ pÞCA þOðk2ðmþ nÞÞ
floating point operations, where CA is the number of operations re-
quired by the application of A or A�. Krylov methods are in the
same range, compared to a full SVD factorization that requires
Oðmn2Þ operations (Golub and Van Loan, 2013), recalling that k
is taken much smaller than m and n. Back to our problem, the Toe-
plitz or BTTB structures of the input matrix enables further gains on
CA, which is the subject of the next section.

APPENDIX B

FAST TOEPLITZ MATRIX-VECTOR PRODUCT

In this appendix, we will deal with the following Toeplitz matrix:

T ¼
0
@ a3 a2 a1

a4 a3 a2
a5 a4 a3

1
A. (B-1)

The Hermitian transpose of a Toeplitz matrix is also a Toeplitz
matrix; thus, the following development equally applies to T�.
Given a Toeplitz matrix T, we can embed it into a circulant matrix
C as follows:

C ¼

0
BBBBBBBBBB@

a3 a2 a1 0 0 0 a5 a4
a4 a3 a2 a1 0 0 0 a5
a5 a4 a3 a2 a1 0 0 0

0 a5 a4 a3 a2 a1 0 0

0 0 a5 a4 a3 a2 a1 0

0 0 0 a5 a4 a3 a2 a1
a1 0 0 0 a5 a4 a3 a2
a2 a1 0 0 0 a5 a4 a3

1
CCCCCCCCCCA
. (B-2)

Now, if one takes ~x ¼ ðx1; x2; x3; 0; 0; 0; 0; 0Þ, then the vector
made from the first three components of C ~x is equal to Tx
where x ¼ ðx1; x2; x3Þ. We can finally recognize that the applica-
tion of the matrix C is a circular convolution by the vector
ða3; a4; a5; 0; 0; 0; a1; a2ÞT ; thus, a Toeplitz matrix-vector product
can be done in Oðn log nÞ floating point operations thanks to
the FFT (Strang, 1986; Van Loan, 1992; Korobeynikov, 2010) with
n being the number of distinct entries in the Toeplitz matrix, without
having to explicitly form (and thus store in memory) any of the
matrices C or T. Similarly, diagonal averaging can be performed
in Oðn log nÞ floating point operations via the FFT as described
in Korobeynikov (2010): Indeed, for each singular component,
the summation over the diagonals is an acyclical convolution of
the left and right singular vectors.
This procedure can directly be generalized to BTTB matrices,

making use of higher dimensional convolutions and FFTs. The
reader is referred to Lee (1986) and Gao et al. (2013) for additional
details concerning fast BTTB matrix-vector products.
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