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Summary 
 
A flexible Radon modelling algorithm using time-
frequency sparseness weights is introduced. The method 
may be used for a number of applications and combines the 
dealiasing and time resolution benefits of existing methods. 
Compared with a frequency domain sparseness approach, 
the proposed method results in improved attenuation of low 
moveout multiples and better primary preservation. 
Demultiple results using a North Sea dataset are shown. 
 
Introduction 
 
Multiples generate a high level of contamination in seismic 
data, masking the true Earth response we aim to record. 
The contamination may consist of internal multiples within 
the Earth as well as multiples relating to the free surface. 
An ever increasing number of demultiple algorithms have 
been developed to work in various geological settings (see 
Verschuur, 2006 for a detailed summary). While these 
techniques provide various levels of success, many datasets 
still exhibit residual multiples which are often targeted by 
Radon demultiple. 
 
Radon demultiple (Hampson, 1986) is applied pre-stack 
either before migration in the common midpoint (CMP) 
domain or after migration within a common image point 
gather (CIG). Whichever domain is used, the method 
targets multiples that have a difference in moveout 
compared to corrected primary reflections of interest. The 
method makes a model of the data (generally either 
parabolic or hyperbolic model domains are used) following 
which multiples are isolated by muting the primary 
reflections. The multiples are reverse transformed back to 
the x-t domain following which they are subtracted from 
the input data. 
 
Radon transforms in deep water settings can be particularly 
challenging because the multiples are often aliased. 
Herrmann et al. (2000) introduced a high resolution Radon 
demultiple strategy based on weighted least squares. 
Working in the frequency domain, the algorithm began by 
deriving a low frequency Radon model using least squares 
inversion. The result for the low frequencies was then used 
to derive model domain sparseness weights which 
constrained the Radon model for the higher frequencies, 
thus resulting in a de-aliasing effect.   
 
Although used less frequently, sparse time domain Radon 
demultiple allows the benefit of changing sparseness 
weights in time (Schonewille and Aaron, 2007). While this 

avoids the necessity for working within temporal windows, 
the same sparseness weights are used for all frequencies. 
 
We introduce a flexible Radon algorithm utilizing a time-
frequency domain model. The strategy allows the use of 
time-frequency sparseness weights which combine the 
benefits offered by frequency domain and time domain 
Radon methods. In addition the method derives Radon 
domains for a multitude of spatial windows simultaneously 
to avoid window edge effects. 
 
While described in the context of demultiple the method 
may be used for other applications. Examples include data 
regularization and deghosting. 
 
Theory 
 
Based on a parabolic model, the Radon equations may be 
defined as a summation of model parameters in the 
frequency domain as follows: 
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where  is the angular frequency, dw is a spatial window of 
input data with trace index n, a is the parabolic Radon 
model with trace index m, q is the parabolic moveout 
parameter in s.m-2, and h is the offset of a given input trace. 
The subscript w indicates we are working within a spatial 
window of data where the events may be approximated by 
parabolas. Although expressed in the frequency domain, 
the concept may also be applied in the time domain as 
described by Trad et al. (2003). In the time domain case the 
problem becomes much larger because instead of solving a 
small least squares problem for each frequency slice 
separately we solve for the full -q model in one go.  
 
Instead of working either in the time domain or frequency 
domain, we propose deriving the Radon model for different 
octaves in the time-frequency domain simultaneously. 
Working in this way increases the dimensionality of the 
model domain. Instead of the model existing in the -
parabola domain (in the case of time domain Radon), it 
now exists in the -parabola-octave domain. Solved using 
conjugate gradient inversion, the reverse parabolic stack 
operators are applied in the frequency domain for 
efficiency based on the following expression: 
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where index v represents the octave number (for example, v 
= 1 is 2.5 to 5 Hz, v = 2 is 5 to 10 Hz, etc.). For the adjoint 
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operation, the right hand summation relates to model 
duplication and bandpass filtering. Bandpass filter tapers 
provide some overlap between adjacent octaves.  
 
Once the time-frequency Radon model has been found 
using least squares inversion, model domain sparseness is 
implemented using the iteratively reweighted least squares 
inversion scheme as described by Trad et al. (2003). 
Sparseness weights are allowed to vary as a function of tau 
and parabola for all octaves. As in Herrmann et al. (2000), 
sparseness weights derived on low frequencies are used to 
prevent aliasing at higher frequencies. 
 
Figure 1 illustrates a model from the inversion for a 
synthetic dataset based on peg leg multiples associated with 
water depth 100 m and primary reflection at 3200 m in a 
North Sea setting. The offset range is 100 m to 6000 m 
with increment 100 m. The left hand panel shows the input 
CMP. The right hand displays show time-frequency 
parabolic Radon displays for L2-norm and the proposed 
algorithm for parabola range -50 ms to 200 ms moveout. 
The least squares solution shows a spread of both multiple 
and primary energy across all parabolas. The proposed 
method shows much better separation of primary and 
multiple energy. 
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Figure 1: Synthetic CMP gather and associated model domain 
using L2-norm and the proposed time-frequency sparseness 
method. 

Figure 2 compares Radon demultiple results with a 36 ms 
cut using L2-norm inversion, inversion using frequency 
domain sparseness, and inversion using the time-frequency 
sparseness as proposed. The figure illustrates how the time-
frequency method does a better job of attenuating the 
multiples while preserving primary energy. 
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Figure 2: Synthetic CMP gather demultiple results for a) L2-norm 
solver, b) frequency domain sparseness, and c) time-frequency 
domain sparseness. Multiple energy removed is given in figures d), 
e) and f) respectively. 
 
An additional implementation step provides the derivation 
of time-frequency Radon models for all spatial windows 
simultaneously. Working on all spatial windows at the 
same time is one way to limit any imprint relating to spatial 
windowing. The approach works on the full gather, whilst 
deriving model domains for each spatial window by 
including tapering and summation of data relating to each 
spatial window within the inversion, as shown in the 
following equation: 
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where w is the spatial window index, and the scalar 
function s relates to the tapering together of the reverse 
parabolic stack of each spatial window to form the full 
gather. The scalars may be based on linear, cosine or other 
methods and should sum to unity for each output trace, n. 
 
While the method is presented in the context of multiple 
attenuation, it should be recognized that the same principles 
may also be used for other processing algorithms. 
Examples include linear noise attenuation, deblending, 
receiver ghost attenuation and source designature. 
 
Real data example 
 
The real data example comes from a variable depth 
streamer acquisition (Soubaras, 2010) in the North Sea. The 
acquisition deployed twin dual-level airgun source arrays 
(Siliqi et al., 2013) and towed 10 streamers with 100 m 
separation. Radon demultiple was applied on common 
image gathers (CIGs) using a parabolic cut of 200 ms. 
Figure 3 displays CIGs before demultiple, after demultiple 
using frequency domain sparseness, and after the proposed 
time-frequency Radon algorithm. While both methods were 
broadly effective at removing the multiples, the red arrows 
on the difference sections reveal how the frequency domain 
approach attenuated some primary energy, the time-
frequency less so. Stack sections before demultiple, after 
frequency domain Radon, and after time-frequency domain 
Radon are shown in Figure 4. The red arrows highlight 
some evidence of primary damage in the frequency domain 
result. The green arrow shows stronger multiple attenuation 
using the time-frequency Radon method. 
 
Conclusions 
 
We have proposed a time-frequency domain Radon 
modeling algorithm. The algorithm may be used for a 
number of applications and the flexibility of sparseness 
weights in the time-frequency domain allows the benefits 
of frequency domain and time domain Radon algorithms. 
The results of the algorithm for demultiple on synthetic and 
real data illustrate the effectiveness of the approach for 
improved separation of primary and multiple energy. 
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Figure 3: Common image gather Radon demultiple comparison of 
a) input data, b) Radon demultiple using frequency domain 
sparseness, c) Radon demultiple with the proposed time-frequency 
sparseness method, d) frequency domain multiple model (a)-(b), e) 
time-frequency domain multiple model (a)-(c). 
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Figure 4: Post-migration stack Radon demultiple comparison of a) input data, b) Radon demultiple using frequency domain sparseness, c) Radon 
demultiple with the proposed time-frequency sparseness method, d) frequency domain multiple model (a)-(b), e) time-frequency domain multiple 
model (a)-(c). 
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