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Summary 

 

In marine seismic acquisition, seismic interference (SI) 
remains a considerable problem when marine seismic data 

sets are acquired in close vicinity to each other. We present 

a method for attenuating SI noise using a sparse Tau-P 

transform. Using a synthetic example, we demonstrate that 

this method effectively attenuates SI noise while preserving 
the seismic signals. Further tests on field data confirm the 

robustness of the method. Compared to the conventional 

Tau-P based method, our approach leaves less residual 

noise while still preserving the integrity of the primary 

signals.  
 

Introduction 

 

Seismic interference is common in marine seismic surveys 

when multiple seismic surveys are acquired simultaneously 
in close proximity of each other. SI noise has a negative 

impact on seismic signal processing, such as multiple 

removal, and attenuation of such noise using stacking is 

unsuccessful when the slope is close to that of signals 

arriving around the same time. As a result, further 
processing is required to remove SI noise.  

 

SI noise attenuation has sometimes been put into the same 

framework as deblending, which is an appealing technique 

with the potential to achieve a denser shot sampling rate 
(Berkout, 2008). Often similar algorithms can be applied to 

both data deblending and SI noise attenuation. Deblending 

usually resorts to iterative methods, which minimize a cost 

function and gradually separate signal and noise step-by-

step (Baardman et al., 2014; Peng et al., 2014). However, 
SI noise is often not as strong as blended signals because 

the seismic sources that generate SI noise are usually not as 

close as the blended sources. As a result, costly iterative 

inversion methods are often not necessary for SI noise 

attenuation.  
 

Identification and attenuation of SI noise can be performed 

in different domains, such as offset-time(𝑥 − 𝑡), frequency-

wavenumber (𝑓-k), and Tau-P (Yu, 2011). SI noise can be 
identified by moveout, slope, or amplitude. A propagation 

mechanism has also been used to identify and attenuate SI 

noise (Gulunay, 2008). SI noise attenuation algorithms can 

be applied in 2D or 3D domains, such as the 𝑓 − 𝑥 − 𝑦 

domain. Additionally, a SI attenuation algorithm has even 
been applied to 4D data (Kommedal et al., 2007). 

 

Most aforementioned SI noise attenuation methods assume 

that shot spacing is sufficiently small in the sail line 

direction, and the geology varies slowly. Therefore, the 

signals are coherent in the shot domain, while the SI noise 

is less coherent across consecutive shots. One approach for 

SI noise attenuation transforms each input shot gather 
(spatial windows may be optionally used) into the Tau-P 

domain. Then SI noise is identified and attenuated by 

comparing Tau-P coefficients between neighboring shots.  

 

Tau-P transforms have been widely used in seismic signal 
preprocessing because they offer a good representation of 

the seismic signals (Gulunay et al., 2007). However, Tau-P 

transforms also suffer from energy leakage among different 

slowness values, which limits separability of events with 

different apparent dips. One solution is to add a sparseness 
constraint to the Tau-P transform to suppress energy 

leakage and thus improve the resolution of the Tau-P 

transform (Herrmann et al., 2000). This strategy was 

extended to a progressive sparse Tau-P inversion method 

by Wang and Nimsaila (2014) to improve the stability and 
efficiency and to better handle weak events. 

  

We propose replacing the regular Tau-P transform with the 

progressive sparse Tau-P inversion to obtain a more 

accurate Tau-P representation of the input shot gather for 
SI noise attenuation. Our synthetic and field data examples 

show that this method leads to more desirable results than 

similar methods based on regular Tau-P transform. 

 

Method 
 

Progressive sparse Tau-P inversion has been proposed for 

plane-wave decomposition in the presence of strong spatial 

aliasing (Wang and Nimsaila, 2014). The key is to find a 

sparse 𝑓 −𝑝𝑥 − 𝑝𝑦 model, 𝑀, to fit the input data, 𝐷, when 

inverse Tau-P transformed: 

𝐷(𝑓; 𝑥𝑖 , 𝑦 𝑖) = ∑ 𝑒−𝑖2𝜋𝑓(𝑥
𝑖𝑝𝑥

𝑗+𝑦𝑖𝑝𝑦
𝑗)𝑀(𝑓; 𝑝𝑥

𝑗 , 𝑝𝑦
𝑗 )𝑗 ,    (1) 

where 𝑓 is frequency, (𝑥𝑖 , 𝑦 𝑖) is the receiver location, and 

(𝑝𝑥
𝑗 , 𝑝𝑦

𝑗) is the slowness pair (𝑖: trace index; 𝑗: slowness 

index).  Equation 1 can be solved through a progressive 

sparse Tau-P inversion process as described by Wang and 

Nimsaila (2014). 
 

To make the data more suitable for plane wave 

decomposition, we divide shot gathers into local spatial 

windows (Figure 1). With coefficients in the Tau-P domain 

at hand, we compare the amplitude of coefficients of each 
gather with coefficients of its neighboring gathers to 

identify SI noise. By assuming that signals are continuous 

and slowly varying while SI noise is not, we can identify SI 

noise as outliers in the Tau-P domain. We scale-down those 

Tau-P coefficients that are considered as SI noise based on 
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Figure 1:  Sketch of our workflow: shot gathers are divided into spatial windows. Data in each window is transformmedto the Tau-P domain. The 
Tau-P coefficients of neighboring shots in each window are compared to identify seismic interference (SI) noise. 
 

the median value in each operation window and then 

transfer the scaled coefficients in the Tau-P domain back to 

the offset-time domain. As a result, the SI noise is 

attenuated, while the signal is preserved. An alternative 

approach is to generate an SI noise model by transforming 
the difference between the original and scaled Tau-P 

coefficients back to the x-t domain and subsequently 

removing the SI noise from the original gathers using a 

subtraction algorithm. The latter approach usually 

preserves the signal better. Throughout this work, we only 
show results generated using the first approach.  

 

We summarize our flow as follows: 

1. Prepare input shot gathers in the (𝑥 − 𝑡) domain. 
2. Transform into the Tau-P domain using progressive 

sparse Tau-P transform. 
3. Rearrange Tau-P coefficients into P-shot domain. 

4. Identify and scale-down coefficients corresponding to 

SI noise.  

5. Rearrange modified Tau-P coefficients into shot-P 

domain. 
6. Transform the modified Tau-P coefficients back to 

(𝑥 − 𝑡) domain. 
 

Synthetic data examples 

 

We generated a synthetic data set using the 2004 BP model 
(Figure 2a). Shot spacing was 50 m, and the maximum 

offset was 8000 m. The recorded signals included direct 

arrivals, reflections, and refractions from sediment 

structures as well as a complex-shaped salt body (Figure 

2b). Different types of SI noise were added to the modeled 
synthetic shot gathers, including linear-shaped SI noise 

from both the head and tail of the cable boat and curve-

shaped SI noise from the side of the cable boat (Figure 2b). 

 

To demonstrate the effectiveness of our method, we 

increased the amplitude of SI noise to be stronger than what 

is typically found in field data. Attenuating the SI noise 

using a regular Tau-P transform with the same workflow 

resulted in SI noise residuals and signal damage in the 
output and the difference (Figures 2c and 2d). This was 

partly caused by the energy leakage problem of the regular 

Tau-P transform. Our proposed method reasonably 

attenuated SI noise and left minimal residuals in the output 

data, even with strong SI noise (Figure 2e). The difference 
between the input and the output of the proposed method 

did not show any observable primary damage (Figure 2f). 

 

Field data examples 

 
Next, we applied our method to data acquired from Garden 

Banks, Gulf of Mexico with a shot spacing of 150 m 

(Figure 3a). The noise that arrived earlier than the first 

arrivals did not affect the processing steps. Therefore, the 

main objective was to attenuate the SI noise in the lower 
half of Figure 3a (blue box). After applying the SI 

attenuation method using a regular Tau-P transform, some 

residual SI remained (Figure 3b, blue arrows). Although 

harsher parameters could further attenuate the SI noise 

residuals, this would result in signal damage. The limited 
resolution of the regular Tau-P transformation caused by 

the leakage problem prevented us from clearly separating 

signal and noise. On the other hand, the progressive sparse 

Tau-P transform allowed us to find a better balance 
between leaving noise residuals and damaging signal 

because the sparse Tau-P transform suffered less from the 

leakage (Figure 3c and 3d). Stacking common middle point 

(CMP) data together is a powerful tool for evaluating 

denoised data in seismic signal preprocessing. Random 
noise is strongly attenuated during stack. However, SI 
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Figure 2:  Synthetic test using 2004 BP model. (a) The velocity model. (b) Input data with different shaped SI noise. (c) Output after applying the 
SI attenuation using regular Tau-P transform. (d) The difference between input (b) and output (c). (e) Output after applying our SI attenuation 
method. (f) The difference between input (b) and output (e). 

 
noise remains after stacking a sequence of data (Figure 4a). 

After denoising using a regular Tau-P transform, the signal-

to-noise ratio was improved, but residual SI noise was left 

on the stack (Figure 4b). Compared to the conventional 

Tau-P transform (Figure 4b), our method left less residual 
SI noise in the stacked data (Figure 4c and 4d).  

 

Conclusions 

 

We demonstrated that SI noise can be effectively attenuated 
by comparing the sparse Tau-P coefficients of neighboring 

shots. Compared to an equivalent approach based on the 

regular Tau-P transform, our method works better because 

the progressive sparse Tau-P inversion provided better 

separation between events with different dip  (noise and 
signals). This resulted in more accurate removal of SI noise 

and better preservations of seismic signals. We assume that 

the signals of neighboring shots are similar, which is valid 

as long as the shot spacing is sufficiently small in the sail 

line direction. When the shot interval is large or in areas 

where geological structure varies abruptly , seismic events 

may change rapidly through consecutive shots. In those 
cases, SI noise removal without damaging signals remains 

a challenge topic. 
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Figure 3:  Data from Garden Banks, Gulf of Mexico. (a) Input data with SI noise. (b) Output after applying the SI attenuation method based on 
conventional Tau-P transform. (c) Difference of (a) and (d). (d) Output after applying our SI attenuation method. 

 

Figure 4:  Stacked data from Garden Banks, Gulf of Mexico. (a) Input data SI noise. (b) Output after applying the SI attenuation method based 
on conventional Tau-P transform. (c) Difference of (a) and (d). (d) Output after applying our SI attenuation method. 
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