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Limaçon is a French word meaning snail (from the Latin 
word limax). In the real world, limaçons have a 

wide range of applications from culinary (a delicacy in some countries) 
to cosmetics (their slime is used for human skincare). In the mathe-
matical world, limaçons (also known as Pascal’s limaçons after Etienne 
Pascal, father of Blaise Pascal) have many applications too, from the 
shape of electrical conductor’s cavity to the study of black holes. In this 
article I investigate another field of application in geophysics: seismic 
amplitude variation with offset and azimuth (AVOAz).

Commonly fitted by an ellipse, AVOAz is actually better approxi-
mated using limaçons. The article begins by reviewing the properties 
of the original limaçon, then explains how they can apply to AVOAz 
and finally illustrates how limaçons can help with the interpretation of 
anisotropy on real data. 

Original limaçon
The original limaçon has a simple mathematical form that hides a lot of 
complexity. Its expression in polar coordinates is given by:

                               ( ) ( )φφ cosbaR += 	
   ,                                         (1)

where ϕ is a variable that could represent time (in the study of trajec-
tories for example) or, in the context of this article, the source-receiver 
azimuth. The parameters a and b control the shape of the limaçon. 
Figure 1 shows the family of limaçons for different ratios |a/b|.

The limit behavior where the ratio is either 0 or infinity describes a 
circle. In between, as the ratio increases, the limaçon evolves from 
an inner-loop (|a/b|<1) to a cardioid (|a/b|=1), named after its heart-
shaped appearance. As the ratio increases further, the limaçon exhibits 
a dimple (1<|a/b|<2) and finally becomes convex (|a/b|>=2). More 
classes of limaçons have been defined based on inflexion points such 
as uniflexional, biflexional and undulational (Gibson, 2001) but are not 
covered in this article. It is interesting to note that an ellipse can be 
obtained by taking the inverse of a dimpled limaçon for example.

AVOAz limaçon of 2nd order
AVOAz is used to study azimuthal anisotropy from seismic data, 
whether the anisotropy is stress-induced and/or fracture-induced. The 
AVOAz reflectivity, R, can be expressed in terms of Fourier coefficients 
(e.g. Downton et al., 2011) and for a given angle of incidence, may be 
written as:

                                ( ) ( )( )220 2cos φφφ −+= rrR 	
   ,                                   (2)

where ri and ϕi (i=0,2) are the magnitude and phase of the ith Fourier 
coefficient which vary with angle of incidence. Fourier coefficients 
of order 4 have been discarded in equation (2). This is a common 
simplification which means assuming the anisotropy is elliptical or 
approximated using near offsets only, e.g. near offset Rüger equation 
(Rüger, 1996). 

Downton and Roure (2015) discuss the interpretation of the Fourier 
coefficients for different types of anisotropy. A simple explanation 
for the scope of this article is that r0 controls the amplitude variation 
with offset (AVO) of the data and the 2nd and 4th Fourier coefficients 
control the amplitude variation with azimuth (AVAz): r2 is related to the 
anisotropic gradient and r4 is a function of the anellipticity.

By comparing equations (1) and (2), it appears that the AVOAz expression 
has the same form as a limaçon with a different phase (constant phase 
shift ϕ2 and double phase). Similarly to the original limaçon, the ratio  
|r0 /r2| controls the shape of the AVOAz curve as illustrated in Figure 2 
with ϕ2=0. The same classes are defined but with a few differences:

Figure 1. Original limaçon for different ratios |a/b|.
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•• Whereas the transformation of the original limaçon occurs on one 
side only, the transformation of the limaçon described by equation 
(2) occurs on two sides at the same time (due to the double angle in 
the phase).

•• The class |r0 /r2|=0 no longer describes a circle but a four-petal rose. 
r0 could be zero for a variety of reasons depending on the angle of 
incidence, e.g. class II AVO.

•• The threshold between the classes “dimple” and “convex” changes 
due to the double angle of the phase that impacts the computation 
of the derivatives of equation (2). 

I keep the name “cardioid” by analogy to the original limaçon even 
though a more appropriate term would be a lemniscate due to its 
figure-eight shape. The class |r0 /r2|= ∞ corresponds to the isotropic 
or VTI/polar anisotropy case (r2=0) or negligible azimuthal anisotropy 
(r2<<r0) which is indeed described by an azimuthally invariant circle.

Figure 2. AVOAz limaçon of 2nd order for different ratios |r0 /r2| and ϕ2=0. 

Even though equation (2) corresponds to elliptical anisotropy, it does 
not lead to elliptical AVOAz shapes in Figure 2 but the ellipticity rather 
refers to the P-wavefront (Thomsen, 2002, pages 1-31 to 1-33).

The limaçon can also be displayed in amplitude versus azimuth plots. 
Figure 3 (left) shows the reflectivity R as a function of azimuth for 
different classes represented by different colors. It appears that two 
of the four petals correspond to positive values and the other two 
to negative values. In the same way, the inner-loops correspond to 
different amplitude sign. The cardioid occurs when the minimum (or 
maximum) amplitude is zero. The amplitudes of the other classes 
(dimple, convex, circle) are strictly positive (or negative). The reflectivity 
R can be decomposed into individual Fourier coefficients (Figure 3, 
right): the 2nd order is fixed in black while the constant 0th order (color 
lines) varies transforming the limaçon from one class to the other.

If the phase ϕ2 changes in equation (2), the limaçon rotates as illustrated 
in Figure 4. Adding 90° to ϕ2 or changing the sign of r2 results exactly in 
the same curve. Therefore the orientation of the limaçon cannot be used 
to interpret the anisotropy orientation without ambiguity.

The AVOAz limaçon of 2nd order closely resembles the gradient 
equation given by Rüger (1996):

                              ( ) ( )symaniiso BBB φφφ −+= 2cos 	
    ,                                       (3)

where Biso is the azimuthally invariant part of the gradient B, Bani is the 
anisotropic contribution and ϕsym is the direction of the symmetry-axis 
plane (perpendicular to fractures for example). The difference is that 
the double phase in equation (2) becomes a square in equation (3) 
but similar conclusions can be drawn. The ratio |Biso /Bani| controls the 
shape of the limaçon (see for example Figure 5.6 in Rüger, 1996 and 
also Liu and Ogloff, 2005) and the same orientation ambiguity occurs 
if the sign of Bani flips or if the phase ϕsym changes by 90°. However the 
interpretation of the gradient equation (3) is different from the AVOAz 
equation (2). Biso and Bani are not dependent on the angle of incidence 
while r0 and r2 are: Biso and Bani are parameter driven while r0 and r2 are 
data driven.

Another application of the limaçon of 2nd order is the possibility to 
analyze velocity variation with azimuth (VVAz). However this article 
focuses only on amplitudes.

Figure 3. Alternative representations of the limaçon for four different classes. 
Left: reflectivity R versus azimuth; right: 0th order (changing colors) and 2nd order 
(black) Fourier coefficients versus azimuth.

Figure 4. AVOAz limaçon of 2nd order with ratio |r0 /r2|=2 and phase ϕ2=0°, 45°, 
90°, 135°.
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Before adding the 4th Fourier coefficient to equation (2), I look at its 
contribution separated from the 2nd Fourier coefficient and consider 
the following AVOAz reflectivity expression:

 ( ) ( )( )440 4cos φφφ −+= rrR 	
                                   (4)

Figure 5 shows the evolution of the associated limaçon as the ratio  
|r0 /r4| increases and ϕ4=0. 

Figure 5. AVOAz limaçon of 4th order for different ratios |r0 /r4| and ϕ4=0. 

The transformation of the limaçon now occurs in four different direc-
tions simultaneously due to the increased phase periodicity in 
equation (4). The class |r0 /r4|=0 now describes an eight-petal rose 
and the cardioid class resembles the four-petal rose from the AVOAz 
limaçon of 2nd order (Figure 2). As in the previous case, the threshold 
between the classes “dimple” and “convex” changes because of the 
impact of the phase on the derivatives. Again, the limaçon rotates as 
the phase ϕ4 changes. 

Extended AVOAz limaçon
A more general form of AVOAz is obtained by combining equations  
(2) and (4) as follows: 

( ) ( )( ) ( )( )44220 4cos2cos φφφφφ −+−+= rrrR 	
  ,                        (5)

This expression no longer corresponds to the original limaçon and is 
referred to as an extended limaçon which is the sum of two limaçons 
with different phases. Figure 6 shows the evolution of this extended 
limaçon for different ratios |r0 /r2| and |r0 /r4| when the phase shifts ϕ2 
and ϕ4 are equal to 0. 

The shapes shown in Figure 6 are not exhaustive and are meant 
to be read by column from top to bottom, describing the growing 
impact of the 4th Fourier coefficients on the AVOAz limaçon of 2nd 
order (depicted in the top row). The scale is non-linear in that the 
main diagonal does not correspond exactly to |r2 /r4|=1 but above 
this diagonal the influence of r2 is generally larger than r4. Starting 
from the two columns on the left, the circle and convex classes of 2nd 
order follow the transformation of the limaçon of 4th order (Figure 5), 
evolving progressively through the dimple, cardioid, inner-loop and 
eight-petal rose classes. In the two columns in the middle, the dimple 
and the cardioid progressively grow a petal under the increasing 
influence of the 4th Fourier coefficient, until reaching the cardioid 
threshold. The shape is further modified by the growth of four inner-
loops that eventually reach the eight-petal rose class. Finally in the 
two columns on the right, the inner-loop of 2nd order and four-petal 
rose are increasingly squeezed vertically by the 4th Fourier coefficient 
to create a dimple that further splits into two smaller distinct petals 
when reaching the cardioid class. Then two inner-loops of 4th order 
appear vertically in the middle and grow into full petals to reach the 
eight-petal rose class.

The transformations illustrated in Figure 6 get more complicated 
as the difference between the phase shifts ϕ2 and ϕ4 gets larger. A 
phase difference (ϕ2 ≠ϕ4) will introduce an asymmetry in the shapes 
(Figures 7f and 7g), except if the difference is a multiple of 45°, in 
which case the transformation of the limaçon on the far right column 
for example would occur horizontally rather than vertically, but still in 
a symmetrical way. 

Figure 6. Extended AVOAz limaçon for different ratios |r0 /r2|, |r0 /r4| and ϕ2=ϕ4=0. 

AVOAz limaçon of 4th order



    JUNE 2015    CSEG RECORDER 25

Some methods, such as the non-linear inversions of Fourier coeffi-
cients (Downton et al., 2011) or of statistical moments (Roure, 2014), 
and methods based on the Rüger equation (1996), rely on the assump-
tion that the phases ϕ2 and ϕ4 are equal. The assumption ϕ2=ϕ4 is 
valid for different types of anisotropy: in the case of a single set of 
vertical fractures in an isotropic background, whether the fractures 
are rotationally invariant (i.e. HTI) or variant (i.e. VFI), or even if the 
background is transversely isotropic (VTI) resulting in VFTI anisot-
ropy. In all those cases, if the media have the same mirror planes, 
then the phase of the 2nd and 4th Fourier coefficients is the same. If 
the phase is different, it suggests that the previous assumptions are 
violated (Downton and Roure, 2015). In other words, anisotropy other 
than HTI, VFI or VFTI or media with different mirror planes result in 
different phases. In the case of two or more non-orthogonal sets of 
vertical fractures, the assumption ϕ2=ϕ4 is still valid when the normal 
to tangential compliance ratio is 1 and each fracture set has equal 
weight (Sayers and Dean, 2001). In the case of HTI media with different 
mirror planes, methods such as the simultaneous elastic inversion of 
azimuthal angle stacks (Downton and Roure, 2010) or of azimuthal 
Fourier coefficients (Roure and Downton, 2012) can handle the 
asymmetry of the extended AVOAz limaçon.

The 4th Fourier coefficient is an expression of the anellipticity of the 
anisotropy which does not imply asymmetry of the shape of the AVOAz 
limaçon (which is caused by the difference in phases). It does however 
imply that the amplitude distribution is asymmetric, which is a measure 
of the skewness (Roure, 2014). If stress-induced anisotropy is assumed 
to be elliptical (Gurevich and Pervukhina, 2010), then the AVOAz 
would look like the limaçons in Figure 2 where the 4th Fourier coeffi-
cient is null. There is however some non-uniqueness in the shapes, 
e.g. an inner-loop such as the one in Figure 2 (1st row, 3rd column) 
also appearing in Figure 6 (4th row, 4th column) where the 4th Fourier 
coefficient is not null. However, if a distinct contribution from the 4th 
Fourier coefficient is observable, e.g. from the number and size of 
petals, then the anisotropy is anelliptical (either due to fractures only, 
or most likely both stress and fractures). This distinction is not possible 
using an ellipse only.

The interpretation of the shape of the limaçons is mostly based on 
the ratio of Fourier coefficients. Figures 2, 5 and 6 display a whole 
range of shapes within the mathematical limits of the parameters. 
Using rock physics, it is possible to reduce the range of the ratios and 
limit the shapes of the limaçons to physical ones, hence reducing the 
non-uniqueness between the shapes and simplifying the interpreta-
tion. Linear slip theory (Schoenberg, 1980) can be used to relate the 
Fourier coefficients ratios to more meaningful properties such as the 
fracture compliances and weaknesses. For example, in the case of 
asymmetric fractures, the ratio of the horizontal to vertical compliances 
controls the relative magnitudes of the 2nd and 4th Fourier coefficients 
(Downton and Roure, 2015).

Continued on Page 26

Real data example
After reviewing many different theoretical shapes of limaçons, I look at 
real data examples from West Central Alberta, Canada (see Downton 
et al., 2011, for more details on the dataset). Figure 7a shows the 8 
azimuthal angle stacks available for this study at an angle of incidence 
of 35°. Corresponding Fourier coefficients are also displayed (Figure 
7b). I now try to interpret AVOAz curves selected spatially throughout 
the dataset using limaçons (Figures 7c to 7g).

The extended AVOAz limaçon shown in Figure 7c clearly presents 
characteristics coming from the 4th Fourier coefficients. The four 
thinner loops or petals could not be coming from a 2nd order limaçon 
alone and are due to the 4th Fourier coefficient splitting 2nd order 
inner-loops into thinner loops (Figure 6, 5th column, 4th row). This 
is a strong indication that the anisotropy is due to the presence of 
fractures. This limaçon is obviously rotated and the relative size of 
the thinner petals compared to the larger ones indicates that the 2nd 
Fourier coefficient is larger than the 4th. The symmetry of the shape 
also indicates that the phases of the 2nd and 4th order limaçons are 
very close (±45°). 

Figure 7. a) Seismic amplitudes measured at 8 different azimuths and 35° angle 
of incidence (West Central Alberta); b) Left to right: 0th, 2nd and 4th Fourier 
coefficients magnitude; c-g) Extended AVOAz limaçons observed from the data at 
different spatial locations. 
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The strong features of a 4th order limaçon are easily identified on Figure 7d by 
comparison to Figure 6 (3rd column, 5th row). The impact of the 2nd Fourier 
coefficient is still visible since the 4 larger petals have different size depending 
on the direction, but its magnitude seems to be smaller than the one of the 4th 
Fourier coefficient. This limaçon is also rotated and symmetrical, suggesting the 
phases do not vary significantly.

The non-uniqueness between the shapes mentioned previously is illustrated 
on Figure 7e. It could either be an inner-loop of 2nd order (Figure 2) or the 
transformation of a cardioid of 2nd order under the influence of the 4th Fourier 
coefficient just before the 4th order inner-loops appear (Figure 6, 4th column). 
Here again the limaçon is rotated and symmetrical.

The difference in phase between ϕ2 and ϕ4 is illustrated on Figure 7f and 
appears with the asymmetry of the shape. Since the impact of both phases is 
visible, the anisotropy is coming from both 2nd and 4th Fourier coefficients. 
The shape is similar to the transformation of the cardioid of 2nd order under 
the influence of the 4th Fourier coefficient (Figure 6, 4th column, 3rd row) and 
suggests significant contribution from both Fourier coefficients.

The last example also shows an asymmetric shape (Figure 7g) due to the 
difference between the phases of the 2nd and 4th order limaçons. The 4th 
Fourier coefficient has modified a 2nd order inner-loop but in an asymmetric 
way compared to Figure 6 (5th column, 5th row). Such a transformation 
requires large Fourier coefficients of both orders 2 and 4. The limaçon orien-
tation seems to be perpendicular to the previous limaçons because the ratio 
|r0 /r2| and |r0 /r4| are both negative in that case. 

Discussion
The interpretation of the extended AVOAz limaçon is complicated by the fact 
that AVO and AVAz are mixed in its formulation, i.e. its shape depends not 
only on the |r2 /r4| ratio (AVAz) but also on the relative magnitude of r2 and r4 
compared to r0 (AVO). The benefit of separating AVOAz into AVO and AVAz for 
interpretation (Downton and Roure, 2015) applies also to the visual interpreta-
tion using limaçons. By removing the r0 AVO term from equations (2), (4) and 
(5), the limaçon now enters the “rose” family. Equation (5) becomes the sum of 
two roses with different number of petals: four for the 2nd order (equation 2 
and Figure 2, 1st row, 1st column) and eight for the 4th order (equation 4 and 
Figure 5, 1st row, 1st column). The shape of the AVAz rose then only depends 
on the |r2 /r4| ratio and difference between the phases ϕ2 and ϕ4. 

The |r2 /r4| ratio can also be used as a processing QC attribute. It’s a partic-
ular case of the Anellipticity Coefficient defined by Araman and Paternoster 
(2014) to measure the contribution of Fourier coefficients of different orders 
and may be used to identify areas of high azimuthal noise. 

Finally, the AVOAz classes mentioned in this article are simply based on 
the shape of the limaçon and analytic geometry (rose, inner-loop, cardioid, 
dimple, convex, circle). Other classifications exist like the anisotropic AVO 
classes based on the sign of the anisotropic gradient (Perez, 2010). 
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Conclusions
Though an ellipse approximation for AVOAz 
may be valid in some cases (mostly for near 
offset assumptions), the general shape of 
AVOAz is more complex and ellipse fitting 
methods may introduce significant bias. This 
article presents a more accurate approxima-
tion using limaçons whose shape is controlled 
by Fourier coefficients ratios and phases. The 
more complex behavior of the limaçon allows 
extracting more information about anisotropy 
compared to the standard ellipse parame-
ters. The interpretation is complicated by 
the non-uniqueness of the shapes, the phase 
difference between the coefficients and a 
90° ambiguity in the orientation. However, 
the limaçon provides a simple visual qualita-
tive interpretation tool that helps understand 
the influence of each Fourier coefficients on 
the overall AVOAz. The interpretation can be 
further quantified by using rock physics to 
reduce some of the ambiguities and provide 
the interpreter with more meaningful anisot-
ropy properties.
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