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SUMMARY
Simultaneous shooting is one of the main levers to increase the cost-effectiveness of seismic data
acquisitions
- either by decreasing the acquisition time or increasing the shot density. It is then fundamental to
design efficient source separation solutions to recover blended data. We address the de-blending
problematic
in the context of land vibroseismic as its operational models are naturally suited for blended
acquisition. In the case of multiple autonomous vibrator trucks, the essential criteria of shooting time
randomness is met and at the same time, many constraints encountered with classical acquisition disappear
(such as shooting time patterns). Fully unconstrained source acquisitions open the way to unprecedented
production rates and shot densities. Simultaneous shooting acquisition can be considered
as a case of Compressed Sensing (timely compressed data). Applying concepts and techniques from this
field, we design a deblending procedure based on inverse problems in the Curvelet domain. We use a
mathematical formulation to address simultaneous source acquisition. The data recovery is based on the
search of the sparse code of the "clean" data in the Curvelet domain, through a l1 regularized inverse
problem. Our procedure has been successfully used to deblend 3D common receiver gathers from a real
blended acquisition.
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 Introduction

Recent developments in applied mathematics give us a new selection of powerful tools to address acqui-
sition challenges. The new paradigms promoted by the Compressed Sensing theory provide excellent 
reasons to acquire seismic data in a compressed manner. As stated in (Candès et al., 2006; Donoho, 
2006) two main requirements have to be fulfilled: (i) the sampling scheme needs to be incoherent and 
(ii) the seismic volumes must be sparsely represented in a specific domain. Seismic data collections are
naturally 5-dimensional structures with four spatial dimensions (sources and receivers) and one temporal
dimension. Incoherent sampling can be achieved by randomizing along sensing dimensions: spatially by
randomizing in the receiver and source positions and/or the shooting times. In this paper we focus on the
recovery of data from simultaneous source acquisitions, in particular land vibroseis acquisition which,
despite very complex data structure, offers easy ways of randomizing shooting time. We model seismic
acquisitions in a mathematical way which enables us to turn the recovery into an inverse problem, (Li
et al., 2013; Lin and Herrmann, 2009). We gather the shooting times, positions, and signatures of the
shots in one operator, called the operator of measurements. The deblending of continuously recorded
data is done by solving inverse problems and this procedure is done one receiver at a time.

Our deblending procedure leverages (i) the fact that seismic volumes can be sparsely approximated 
in some domain (Curvelet domain) and (ii) the multiple degrees of freedom in land vibroseis acquisi-
tions. Unlike marine acquisition, land vibroseis acquisition offers numerous possibilities for efficiently 
implementing Compressed Sensing principles, and in particular randomizing of the shooting times. Fur-
thermore the absence of a time shooting pattern as required by the theory renders the operations even 
more efficient. In the case where each vibrator truck is independent, the shooting orders are triggered 
by the drivers when the trucks are in the shooting positions. This configuration naturally fulfils the ran-
domness required and releases the operation models from the constraints of more classical acquisition 
patterns like flip flop, slip sweep, DS3, etc, (Rozemond, 1996; Bouska, 2009). As the inversions are 
based on sparsity-promotion in the Curvelet domain which is based on the Fourier domain, the denser 
the source grid the better. Hence, the method is well-suited for dense acquisitions.

We begin with describing the acquisition and data models, and then use these to solve a classical opti-
mization problem from the field of Compressed Sensing. The procedure is refined by adding a weighted 
l1-norm and a final least-square inversion. Finally we illustrate our method using real data from a simul-
taneous acquisition.

Acquisition and Seismic Data Models

In seismic acquisition, we are interested in the impulse responses (seismic traces) between the receivers 
and the sources. In vibroseis acquisition, we observe these through a measurement operator. This 
operator gathers all the information about the acquisition, i.e., source signatures, shooting times and 
shot positions. Each continuous record from any receiver can be expressed as the multiplication of this 
operator and the seismic traces, d = Om(u) = MRu (1)

where d is the continuous record from a receiver (uncorrelated raw record) and u is a full volume of
common receiver impulse responses (seismic traces). The operator Om can be decomposed as two
matrix operations: one restriction R and one multiple convolution M, (Li et al., 2013). The restriction
maps the full volume u to the acquired seismic traces. In most cases R is a mask containing 0 and 1
(skipped points), but it can also be an interpolation operator which maps the volume to the exact shot
positions. M is a multiple convolutions operator; for each seismic trace it computes the convolution
between the trace and the source signature emitted at that position and then adds it at the shot time. The
sum of all these contributions theoretically forms the continuous record d. As the source signatures can
be measured during vibroseis acquisition, we use them to build M. Taking into account the fundamental
and the harmonics eases the deconvolution process and enables us to remove harmonic corruptions.
Figure 1 illustrates the mathematical model. The sketch on the left hand side shows that the continuous
raw record d is equal to the sum of all the vibrator contributions. On the right, we show the model
written as a matrix product. The matrix has Toeplitz blocks, i.e., small Toeplitz convolution matrices
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 formed by the source signature associated with each shot.

Figure 1 Sketch and Mathematical Model of a vibroseismic acquisition. Four autonomous vibrator
trucks shooting at four different locations, each of them emitting a source signature si. The continuous
raw record d is equal to the sum of the four contributions, each of them being equal to the convolution
between the seismic trace ui and the source signature si.

In the case of classical acquisition schemes like flip-flop or slip-sweep, the problem in (1) has a unique
solution in the emitted bandwidth. The seismic traces are estimated by computing the correlation be-
tween d and the reference signal (usually a sweep) i.e., by applying the adjoint operator of M (containing
only the fundamentals) to d. Most of the time, this step is automatically done by the acquisition software
and is known as correlation.
In the case of blended acquisition, there is not enough information in the recorded data d to uniquely de-
termine the right common receiver volume. The dimension of d is often much lower than the dimension
of Ru, in this case the problem is said to be under-determined. The ratio between these two quantities
can be used to assess the blending level of the acquisition. Therefore we need to add information about
the expected seismic data to solve the problem. Compressed Sensing theory proposes adding informa-
tion by searching for sparse solutions in certain domains. We use the Curvelet domain to model the
seismic volumes (in general, 3D common receiver volume),

u = φx (2)

where φ is the backward Curvelet transform and x the vector of coefficients describing the seismic
volume u. It has been shown in (Candès and Demanet, 2005) that seismic volumes can be sparsely
approximated in the Curvelet domain. This means that we can find x such that (2), with x being sparse
i.e., with few non-zero coefficients. By combining the information from the recorded data in (1) and the
assumption of sparseness, we succeed in recovering unblended seismic data from blended records.

OPTIMIZATION PROBLEM AND DEBLENDING PROCEDURE

The assumptions made above lead us to write the problem as follows,

argmin
x
||x||0 subject to ||MRφx−d||22 < σ (3)

where ||.||0 is the l0 pseudo-norm which is equal to the cardinality of the non-zero coefficient of x and
σ represents the noise level on the raw records. Unfortunately the optimization problem in (3) is a
combinatorial problem and is not solvable in a reasonable time. As it is often the case, such problems
are transposed into convex ones (much easier to solve),

argmin
x

{
||x||1 +λ ||MRφx−d||22

}
(4)

with λ an hyper-parameter used to balance the data-fitting term (least-square) and the sparsifying term
(l1). The above formulation is known to be a good approximation of the non-convex problem in (3).
As suggested in (Candès et al., 2008), we introduce some weights on the Curvelet atoms. The weights
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 correspond to additional information on the atoms by discriminating these by position and angular ori-
entation in the volume. For each atom, a weight is computed and then the minimization is done over a
weighted l1-norm instead of a simple l1-norm as follows,

argmin
x

{
||Wx||1 +λ ||MRφx−d||22

}
(5)

where W is a diagonal matrix formed by the weights on the Curvelet atoms. Equation (5) can be
efficiently solved using classical linear programming algorithms. Under certain conditions and with
good parametrization, we obtain a sparse vector representing the unblended seismic data volume in the
Curvelet domain, but we often have to handle artefacts and some loss of amplitude. To overcome these
imperfections, we finalize our procedure by doing another inversion on the non-zero coefficients of the
vector x (usually called adaptation). This step is a classic least-square inversion on a restricted support,

argmin
x
||MRφSx−d||22 (6)

where S is the restriction operator on the support computed in (5). The solution x0 of (6) is called the 
sparse code of the deblended seismic data volume in the Curvelet domain. The model of the "clean" 
seismic traces is then equal to Rφx0. It is often safer to output the difference between the blended traces 
and the blending noise model computed from Rφx0. Indeed, it is hard to be sure that all of the seismic 
information is contained in the model as the most important events for imagery are often the smallest 
ones energy-wise.

Examples

Historically, PDO has introduced or used high productivity methods (slip-sweep, DS3) leading to im-
provements in both quality and production rates in land vibroseismic acquisitions, (Al-Mahrooqi et al., 
2012). Following this trend, a blending acquisition test was jointly conducted by ARGAS and PDO to 
demonstrate the gains of such an acquisition scheme. This test was acquired employing a fixed continu-
ously recording receiver spread of 1.4 km × 10 km. A total of 12 autonomous vibrators were operating 
on a polygon of 2 km × 10 km, each constrained on separate sectors and shooting on a 12.5 m × 12.5 
m grid. The theoretical signature is the same 9-second up-sweep ranging from 1 Hz to 76 Hz for all 
the trucks. Figure 2 shows results from a common receiver gather, (a) the blended result (obtained by 
doing only cross-correlations between the continuous raw data and the theoretical signature), (b) the 
deblended result, and (c) the difference between (a) and (b). Figure 3 shows results from a shot point 
gather, (a) the blended result, (b) the deblended result, and (c) the difference between (a) and (b). We 
can see that the deblending procedure succeeds in removing most of the blending corruption without 
signal compromise. We estimated, from data on the Figure 3, that the blending corruption is attenuated 
by more than 30 dB. Hence, remaining noise will be easily handled by classical processing sequences.

Conclusion

By leveraging Compressed Sensing concepts and applying these to blended land vibroseis acquisitions, 
we show that good deblending results can be achieved on complex data and that land vibroseis is well-
suited for time-compressed data acquisition. Two main directions of improvement should be investigated 
in future works: the addition of geophysical prior information (we add some by using a weighted l1-
norm) and the integration of finer information in the measurement operator to render the seismic volumes 
sparser, like static and amplitude corrections. With effective deblending procedures and a simplification 
of its operational models, multiple simultaneous sources in land vibroseismic acquisition should be a 
standard in the future.
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Figure 2 Deblending results from a simultaneous source land acquisition. A part of a 3D common re-
ceiver gather for (a) the blended result (cross-correlation by the theoretical signature), (b) the deblended
result, and (c) the difference between (a) and (b).

Figure 3 Deblending results from a simultaneous source land acquisition. A part of a 3D shot point 
gather for (a) the blended result, (b) the deblended result, and (c) the difference between (a) and (b).
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