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Summary 
 
In this paper we develop dynamic-warping full-waveform 
inversion (D-FWI) to address the well-known cycle 
skipping problem in conventional full-waveform inversion 
(FWI). The dynamic warping technique is used to detect 
the traveltime difference between the predicted and the 
observed data. We make use of the timeshift to partially 
warp the observed data and thus generate a series of 
datasets that connect the predicted and the observed data. 
We then use the modified observed data to solve a 
sequence of conventional FWIs that avoid the cycle 
skipping issue. Synthetic and real data examples show that 
D-FWI can converge successfully by overcoming the cycle 
skipping problem, while conventional FWI results in an 
erroneous model. With this new approach, we can invert 
velocity models starting from a higher frequency and/or a 
poor starting model. This technology has the potential to 
save time in the processing sequence since it allows the 
velocity model building to start with minimum pre-
processing on the seismic data and to be done in parallel 
with other pre-processing steps.        
 
Introduction 
 
FWI is widely used in the exploration industry for 
generating high-resolution and high-fidelity velocity 
models which can significantly improve migration results 
and even provide direct information about the reservoir 
(Sirgue et al., 2009; Ratcliffe et al., 2011). However, 
because of the highly oscillatory nature of seismic data, 
resulting in an inherent strong nonlinearity of the objective 
function, the conventional FWI, which is based on 
minimizing the least-squares difference between the 
predicted and observed data, often suffers from numerous 
local minima. This so-called cycle skipping problem occurs 
when the difference in the arrival time between the 
predicted and the observed data is larger than a half cycle 
of the dominant frequency (for example, see Virieux and 
Operto, 2009). A multi-scale frequency sweeping method 
(Bunks et al., 1995), which fits data components 
sequentially from low to high frequency, is often proposed 
to avoid cycle skipping. The success of this frequency 
sweeping approach relies strongly on some potentially 
demanding prerequisites, including an accurate initial 
model and sufficiently low frequency components in the 
seismic data. In the processing of field data, seismic data 
below 3 to 4 Hz is often unavailable due to acquisition 
limitations and noise contamination. On the other hand, 
traveltime tomography, which is often used to provide an 
initial velocity model for FWI, has its own limitations, 

especially for near surface data where limited offsets are 
available for residual moveout analysis in the common 
image gathers. 
 
As a consequence, a lot of effort has been devoted to 
mitigating, or resolving, the cycle skipping issue in 
conventional FWI. For example, several papers have tried 
to address the issue of mismatched events between the 
predicted and observed data: Luo and Schuster (1991) 
exploited the convex property of traveltime in waveform 
inversion; Ma and Hale (2013) applied the dynamic 
warping technique from Hale (2013) to recover the 
traveltime difference between the observed and the 
predicted data and then updated the velocity model by 
minimizing this traveltime difference; Luo and Hale (2013)  
also used dynamic warping to measure the traveltime 
difference between the observed and predicted data but 
then expanded the observed data about the warped 
timeshifts to form a residual without cycle skipping in a 
conventional waveform inversion scheme; Warner and 
Guasch (2014) used Wiener filters to measure the 
wavefield difference and push the predicted data towards 
the observed one by punishing filter coefficients with large 
time-lag.  
 
We propose a new method, D-FWI, to tackle the cycle 
skipping problem. First we use the dynamic warping 
technique (Hale, 2013) with constraints to detect the 
traveltime difference between the predicted and the 
observed data. We then apply the timeshift to the observed 
data with different scales and thus generate a series of 
datasets that connect the predicted and the observed data. 
Finally, we use the modified observed data in the 
framework of conventional FWI and solve a sequence of 
inversions that avoid the cycle skipping problem. As the 
predicted data progressively converges to the observed 
data, the updated velocity model converges to the true 
model as well. We demonstrate our method using the well-
studied 2D Marmousi model and a real data example from 
Indonesia. In both cases, our method successfully 
overcomes the cycle skipping problem and provides good 
velocity models, while conventional FWI converges to an 
erroneous result. 
 
Method 
 
Conventional FWI’s objective is to minimize the least-
squares difference between the predicted and the observed 
data   
                                 2DPf M  ,                                 (1) 
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Dynamic-warping FWI 

where D is the observed data and PM  is the synthetic data 
predicted by the model M. When the initial model M is far 
from the correct one, conventional FWI cannot converge 
from PM to D when there is a lack of low frequency signal 
in the seismic data. In fact, cycle skipping occurs when the 
maximum time difference between the predicted and the 
observed data is larger than a half cycle of the dominant 
frequency. To solve this issue we propose to generate a 
series of datasets satisfying the following two conditions: 
1) connecting the predicted and the observed data, 2) 
constraining the maximum time difference between two 
adjacent ones in the series to be less than a half cycle of the 
dominant frequency. Then we propose to solve a sequence 
of conventional FWIs 
                                2

nMn DPf  ,                               (2) 

where Dn are the generated datasets connecting the 
observed and the predicted data. 
 
To produce the connecting series, we first need the 
information of the time difference between the predicted 
and the observed data. This can be provided by the robust 
dynamic warping algorithm (Hale, 2013). Dynamic 
warping searches for temporal and spatial variant timeshifts 
τ to minimize the least-squares difference between the 
predicted and the shifted observed data 
               2;,;,;, txxtxxDtxxPC srsrsrM         (3) 

with the constraints of  
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where xr is the location of receivers, xs is the location of 
shots and the ’s are the maximum values allowed in each 
domain. With the constrained optimization, dynamic 
warping can avoid cycle skipping for band-limited data and 
estimate the timeshifts accurately.   
 
After estimating the maximum of the modulus of the time 
difference,   txxt srm ;,max  , we can now define 

an integer N by 
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min T
n
tnN m ,                         (4) 

where T is the duration of one cycle of the dominant 
frequency in the seismic data. In practice, a safety factor is 
applied to get N. A series of bridging datasets are defined   

           













  txx

N
ntxxDtxxD srsrsrn ;,1;,;,  .    (5) 

The modified data will be used in conventional FWI. For 
instance, in the first round FWI will try to invert for the 
velocity which makes the predicted data PM move towards 
the shifted observed data D1. By construction, there is no 
cycle skipping between PM and D1 since their maximum 

time difference is less than the half cycle of the dominant 
frequency according to equations (4) and (5). 
 
In summary, we generate a series of modified observed 
datasets where no cycle-skipping occurs. We move the 
predicted data towards the observed data step by step along 
the generated series. With this proposed D-FWI algorithm 
we can achieve a reasonable velocity field when starting 
from higher frequency and/or a poor starting model.    
 
Examples 
 
To demonstrate our method, we first use the well-known 
2D Marmousi model. As shown in Figure 1(a), we 
modified the velocity model by adding a 200 m thick water 
layer on the top of the original Marmousi model. For 
simplicity, constant density is used to generate the synthetic 
data and in the inversion as well. Figure 1(b) shows the one 
dimensional initial model with the correct water velocity 
and a linearly varying velocity profile from water bottom to 
the lower boundary of the model. The shots and receivers 
are arranged uniformly with a grid spacing of 24 m and a 
depth also of 24 m. The maximum offset used in FWI is 5 
km. The water surface is set as a free surface to model 
ghosts and free-surface multiples. We ran the inversion 
iteratively from 3 to 10 Hz using diving waves, reflections 
and their multiples. The total number of iterations is 110 
(1/5 of the shots are used in each iteration). The water 
velocity is kept fixed during the inversion process. All the 
parameter settings are exactly the same for both 
conventional FWI and D-FWI. At 3Hz, a significant 
portion of the data predicted by the initial model is cycle 
skipped. It can be seen from Figure 1(c) that conventional 
FWI is unable to recover the correct model and the 
subsurface geological structures are significantly distorted, 
especially on the right-hand side. On the other hand, the 
result in Figure 1(d) shows that D-FWI successfully copes 
with cycle skipping and inverts a velocity model which is 
closer to the true one. 
 
We also applied D-FWI on a real dataset to illustrate the 
effectiveness of this new approach. This is an Indonesian 
3D OBC survey acquired in shallow water and a strong 
current environment. There are carbonate layers in the 
shallow section around 1 km in depth. We used FWI to 
obtain a shallow target velocity model. Both conventional 
FWI and D-FWI were executed through frequencies from 
3.5 to 5 Hz with 20 iterations in total. Here only the diving 
waves out to the maximum offset of 3 km are used to 
update the shallow velocity model. The initial velocity, 
shown in Figure 2(a), is a manually sped up velocity model 
according to existing geological information. However, 
cycle skipping still exists between the observed data in 
Figure 3(a) and the synthetic data in Figure 3(b), which is 
predicted by this initial velocity model. The corresponding 
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Dynamic-warping FWI 

shot location is indicated by the yellow arrow in Figure 
2(a). Due to cycle skipping, conventional FWI inverted a 
low velocity at ~1 km in depth as shown in Figure 2(b). 
The corresponding synthetic data shown in Figure 3(c) is 
very different from the observed data. In comparison, D-
FWI can mitigate cycle skipping and figure 2(c) shows that 
D-FWI has a high velocity layer at the expected depth 

level. The synthetic data generated by D-FWI is shown in 
Figure 3(d). It is much closer to the observed data. We ran 
depth migration using these three velocity fields to check 
their effects on the image. Figure 4 displays one inline 
section going through the carbonate area. Pull-ups exist in 
the conventional FWI result in figure 4(b) due to the wrong 
inverted velocity. The D-FWI results in figure 4(c) show

                       
Figure 1: (a) The true Marmousi model with an additional 200 m water layer. (b) A one-dimensional initial model with correct water velocity. (c) 
Result from conventional FWI from 3 to 10 Hz. (d) Result from D-FWI from 3 to 10 Hz. We can see that D-FWI successfully overcomes the 
cycle skipping issue, while conventional FWI fails to recover the correct model in places. 

                           
Figure 2: (a) Initial velocity model which is manually sped up to include the carbonate feature at ~1 km depth. (b) Velocity model of conventional 
FWI from 3.5 to 5 Hz. (c) Velocity model of D-FWI from 3.5 to 5 Hz.  
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better event focusing in the shallow, as well as the deep, 
section compared with the initial velocity results. Since we 
only updated the velocity up to 5Hz with limited iterations 
and offset range, additional passes of FWI based on the 
current D-FWI results can be run to further improve the 
velocity model. 
 
Conclusions 
 
Dynamic-warping FWI makes use of traveltime difference 
information provided by the dynamic warping technique to 
reconstruct a series of effective observed datasets that are 
free of cycle skipping. As the flow moves on, the modified 
observed data will converge to the original observed data 
and the updated velocity model converges to the true 
model. As demonstrated through the synthetic and real data 
examples, our new technique is capable of inverting for a 

reasonable velocity model starting from higher frequency 
and/or a poor initial model, while conventional FWI suffers 
from cycle skipping problems and fails to converge to the 
correct velocity model. 
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Figure 3: The observed data (a) and synthetic datasets predicted by: (b) initial model, (c) conventional FWI updated model and (d) D-FWI 
updated model. All of them have been filtered with a low-pass of 5 Hz. We can see that the initial model has a cycle skipping issue compared 
with the observed data, meaning conventional FWI fails to move the modeled data in the correct direction. In comparison, D-FWI results in a 
much better fit with the observed data. 

    
Figure 4: 3D depth migration stack section of one inline going through the shallow carbonate layer: (a) results of initial velocity, (b) results of 
conventional FWI, and (c) results of D-FWI. Pull-ups still exist, or are made worse, in conventional FWI due to the wrong velocity, whereas the 
image is improved with D-FWI.  
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