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Summary 

We investigated how current least-squares reverse time 
migration (LSRTM) methods perform on subsalt images. 
First, we compared the formulation of data-domain vs. 
image-domain least-squares migration (LSM), as well as 
methods using single-iteration approximation vs. iterative 
inversion. Next, we examined the resulting subsalt images 
of several LSRTM methods applied on both synthetic and 
field data. Among our tests, we found image-domain 
single-iteration LSRTM methods, including an extension 
from Guitton’s (2004) method in the curvelet domain, not 
only compensated for amplitude loss due to poor 
illumination caused by complex salt bodies, but also 
produced subsalt images with fewer migration artifacts in 
the field data. By contrast, an iterative inversion method
showed its potential for broadening bandwidth in the 
subsalt, but was less effective in reducing noise. Based on 
our understanding, we summarize the current state of 
LSRTM for subsalt imaging, especially between single-
iteration and iterative LSRTM methods. 

Introduction 

We can consider recorded seismic data to be the results of 
forward modeling experiments through subsurface 
structures. To image the reflectivity of the subsurface, we 
need to reverse the forward wave-propagation effects with 
an inverse of the forward modeling operator. Reverse time 
migration (RTM), the state-of-the-art imaging technology 
for complex structures (Baysal et al., 1983; Etgen et al., 
2009; Zhang and Zhang, 2009), uses an adjoint modeling 
operator to approximate the inverse of the forward 
modeling. However, the accuracy of this approximation is 
degraded by spatial aliasing, limited aperture, noise, and 
non-uniform illumination due to complex overburden 
(Claerbout, 1992). As a result, the RTM image may have 
migration artifacts with limited bandwidth and uneven 
amplitudes (Gray, 1997).   

Least-squares migration (LSM) was proposed to 
approximate the inverse of the forward modeling operator 
through either an iterative inversion (Tarantola, 1987; 
Schuster, 1993; Nemeth et al., 1999) or a single-iteration 
inversion (Hu et al., 2001; Rickett, 2003; Guitton, 2004; 
Lecomte, 2008). In recent years, least-squares reverse time 
migration (LSRTM) has attracted considerable attention 
(Wong et al., 2011; Dai et al., 2013; Zhang et al., 2013; 
Zeng et al., 2014). Improved image quality (both continuity 
and resolution), reductions in migration artifacts and noise, 
and better amplitudes are often cited as benefits of 
LSRTM; it is considered the next promising technology for 
subsalt imaging in the Gulf of Mexico (GOM). 

Theory 

In this section, we discuss the general theory of LSM that is 
applicable to commonly used migration methods, including 
RTM, in both data and image domains. We also compare 
how different LSM methods invert the Hessian matrix 

(Table 1). In addition, we outline an image-domain single-
iteration LSM implementation in the curvelet domain. 

1. Data-domain and image-domain iterative LSM 

Data-domain LSM inverts for a reflectivity model, , to fit 
the recorded data,  (Tarantola, 1987; Schuster, 1993; 
Nemeth et al., 1999), 

,                                   (1) 
where  is the cost function to be minimized and  is the 
linearized Born modeling operator. Similarly, image-
domain LSM (Tang, 2008; Aoki and Schuster, 2009) 
inverts for a reflectivity model to fit the raw migrated 
image, , 

,                                (2) 
where  is the migration operator. If  is invertible, the 
least-squares solution for both Equations 1 and 2 is unique 
and thus the same:  

                                            (3) 
where  is the so-called Hessian matrix, .

Unfortunately, the size of  is too large to be stored on 
disk or in memory for real problems, and, therefore, a 
direct inverse of  is impractical. In practice, regardless of 
the invertibility of , both Equations 1 and 2 can be 
iteratively solved by either steepest descent or conjugate 
gradient method (Lambaré et al., 1992). The gradient for 
Equation 1 can be written as: 

,                                          (4) 
and the gradient for Equation 2 can be written as: 

.                                   (5) 

For one iteration of LSM, the computation of  in 
Equation 4 costs one Born modeling and one migration; the 
computation of  in Equation 5 doubles this cost because 
of the cascade of modeling and migration operators. If 10 
iterations are needed for the convergence of the inversion, 
the cost of data-domain and image-domain iterative LSM is 
at a level of 20 and 40 migrations (part of the computation 
for Born modeling and the migration may be shared to save 
some costs), respectively. This can be computationally 
prohibitive for modern 3D marine streamer data that uses 
RTM extensively for model building and the moderate- to 
high-frequency final migration. 

2. Image-domain single-iteration LSM 

The key step of LSM is computing the inverse of the 
Hessian matrix. As discussed above, direct (Equation 3) or 
iterative (Equations 4 and 5) inversion methods are either 
impractical or very expensive. The cost-reducing 
alternative is to approximate the Hessian matrix. Lecomte 
(2008) and Fletcher et al. (2016) proposed to obtain the 
Hessian matrix using point spread functions (PSFs). The 
PSF method computes the impulse response (Hessian) on a
coarse grid (to reduce interference between PSFs) of 
scattered points. The Hessian for every image point is 
obtained by interpolating between computed PSFs, and is 
then deconvolved from the raw migration image. 
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LSRTM for subsalt imaging 

Domain
Hessian inversion 
or approximation 

method
Theory # of 

iterations

# of 
migrations 

per iteration

Data 
domain

Iterative Cost objective: ; Gradient: 
Output image: 

>10 ~2

Curvelet-domain 
Hessian filter (CHF)

(single iteration)

Migration/modeling: 
Cost objective: 
Output image: 

1 ~2

Image 
domain

Iterative Cost objective: ; Gradient: 
Output image: 

>10 ~4

PSF deconvolution
(single iteration)

Modeling/migration: ( point diffractors model)
Output image: 1 ~2 or more

Curvelet-domain 
Hessian filter (CHF)

(single iteration)

Modeling/migration:
Cost objective: 
Output image: 

1 ~2

Table 1: Comparison of different LSM methods:  is the recorded data;  is the raw migration image;  is the migration operator;  is the 
Born modeling operator;  is the curvelet transform operator; is the inverse curvelet transform operator. 

Guitton (2004) proposed to use non-stationary matching 
filters to approximate the inverse of the Hessian matrix in 
one iteration. In Guitton’s approach, Born modeling is first 
performed using the migration velocity and the raw 
migration image, , to obtain synthetic data, ,
which is then remigrated to obtain a new image: 

.                                               (6) 
Next, non-stationary matching filters, , are found by 
minimizing the following cost function: 

.                             (7) 
After obtaining  the image-domain single-iteration LSM 
image can be written as: 

.                                                   (8) 

Guitton (2004) computes multi-coefficient matching filters 
in the spatial domain (Rickett et al., 2001). Alternatively, 
we extend the idea of a guided image filter proposed by He 
et al. (2013) to formulate a curvelet-domain Hessian filter 
(CHF) for the following two reasons: 
1. Multi-coefficient matching filters in the spatial domain 

may introduce unwanted event shifting because the 
relative amplitudes of events in  are different 
and some events in  may not exist in  and vice 
versa. By contrast, a zero-phase matching filter is more 
straightforward in the curvelet domain.  

2. Events with different dips may need to be matched 
differently. In particular, the matching for crossing 
events (e.g., sedimentary terminations against faults or 
salt flanks) is better suited in the curvelet domain than in 
the spatial domain.  

The cost function of the image-domain CHF can be written 
as

,             (9) 
where  is the curvelet transform operator,  is the 
matching filter, and  is a weighting factor for Tikhonov 
regularization. The final output image is 

,                                       (10) 
where  is the inverse curvelet transform operator and | | 
is used to remove the phase. Data-domain single-iteration 
LSM can also be implemented using this CHF scheme (the 

second row in Table 1) or the scheme proposed by Khalil et 
al. (personal communication, 2016). Hereafter, we refer to 
CHF as the image-domain implementation. 

Application to synthetic data 

We compared PSF, CHF, and data-domain iterative 
LSRTM using the BP2004 synthetic data. The acoustic 
forward-modeled, surface multiple-free data were 
generated using the velocity model shown in Figure 1a, 
along with a density model (not shown here). For the 
migration and Born modeling, a slightly smoothed version 
of Figure 1a was used. Figure 1b shows the reflectivity 
model that served as the ground truth for all three LSM 
methods.  

In the raw RTM image ( ) migrated using the true 
velocity model (Figure 1c), we observed that, compared to 
the reflectivity in Figure 1b, the amplitude of subsalt events 
in Figure 1c was relatively weak due to poor illumination 
caused by the overburden salt. Figures 1d and 1e show the 
image after approximating the inverse of the Hessian using 
PSFs and CHF, respectively. Figure 1f shows the imaging 
results after 25 iterations of data-domain iterative LSRTM.  

From this and other subsalt synthetic LSRTM tests, we 
concluded the following: 
1. All three LSRTM methods - PSF, CHF, and iterative 

inversion - produced similar images with subsalt 
amplitude decay curves (Figure 1g) that matched the 
decay curve of the reflectivity model (the ground truth). 
However, none of these methods could recover the 
completely unimaged events (or those with extremely 
low amplitudes) in the raw RTM image. 

2. Iterative inversion produced results comparable to those 
from the two single-iteration methods after ~20 
iterations. This is consistent with Guitton’s (2004) 
conclusion that a single-iteration LSRTM is a cost-
effective alternative to iterative inversion. 

3. As proposed by Fletcher et al. (2016), we computed 
interleaving grids to ensure sufficient isolation of PSFs 
before interpolation and used salt damping to minimize 
deconvolution instability around salt bodies. In addition, 
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LSRTM for subsalt imaging 

we found a sparse deconvolution can be used to control 
noise (Sacchi, 1997).

4. In terms of computational efficiency and minimal 
manual controls, CHF appeared to be the most practical 
method for these tests. 

We note that this test is not realistic because we did not 
include noise in the synthetic data, and we used the correct 
velocity model. The reality and possibilities for  LSRTM 
for subsalt imaging would be better examined using field 
data in a more realistic context, i.e., with an inevitably 
inaccurate velocity model and residual noise. 

GOM field data example 

A wide-azimuth streamer data set from Keathley Canyon, 
GOM was selected for the field data test. Although known 
for the well-defined salt geometries and overall good 
images, subsalt images in the area still suffer from uneven 
illumination, visible migration artifacts, and sub-optimal 
resolution. The input data underwent typical preprocessing 
to remove noise, ghost energy, multiples, etc. For this test 
we only compared results from CHF and data-domain 
iterative LSRTM. 

When compared to the raw RTM image ( ) (Figure 2a), 
the CHF image (Figure 2b) had more balanced amplitude, 
less noise, and more continuous subsalt events, particularly 
those within the orange oval in Figure 2a. However, CHF 
did not appreciably increase vertical or lateral resolution,
which was expected because (1) our input data were after 
source and receiver deghosting (i.e., the raw RTM image 
was broadband); (2) we generated using a spiky source 
wavelet for the Born modeling and subsequent migration 
(narrowband source wavelet can be used to increase 
apparent resolution but may boost noise as well); and (3) no 
absorption was considered during the wave propagation. 

Up to this point, we showed results of stack-based CHF 
described in Equations 9 and 10. Next, we extended the 
stack-based CHF to surface-offset gathers (SOGs) (Giboli 
et al., 2012):

,     (11) 
.                                      (12) 

Here the raw stacked image (  is used to design the 
guided filter for each offset class. We note that the zero-
phased filter is important to retain event curvatures.  

Figure 2e shows three raw RTM SOGs ( ) spanning 
the stacked image in Figure 2a, while Figure 2f shows the 
same gathers after CHF ( ). We observed that SOGs 
after CHF had a higher signal-to-noise ratio and more 
continuous subsalt events across all offsets and still 
retained the event curvatures. In practice, CHF SOGs can 
be used to improve the difficult task of subsalt tomographic 
velocity updating. A stacked image from SOG-based CHF 
(Figure 2c) showed further reduction of noise when 
compared with the stacked image from stack-based CHF 
(Figure 2b).  

Similar to single-iteration CHF results, data-domain 
iterative LSRTM produced more balanced amplitude in the 

subsalt region. After 10 iterations, the resolution of the 
subsalt region was visibly higher than the raw stack and the 
two CHF stacks (Figure 2d). However, the noise content 
also increased. The increased noise was mostly from a 
wider bandwidth as well as multiple scattering energy due 
to the presence of the salt body (and other strong contrasts) 
in the velocity model used for Born modeling and the 
subsequent migration. 

The quality of subsalt images can be judged by noise, event 
coherency, amplitude consistency, and resolution. Within 
the prospective Lower Tertiary interval (denoted by up-
down arrows in Figure 2) in the region, single-iteration 
CHF performed better in terms of noise suppression, while 
the iterative method yielded higher resolution but also 
produced strong noise from the multiple scattering. All 
methods were effective at removing uneven amplitudes for 
this test area.  

Discussion 

Using BP2004 synthetic and GOM field data, we 
demonstrated that both image-domain single-iteration and 
data-domain iterative LSRTM methods can reduce uneven 
subsalt amplitudes.  

The PSF method computes the exact impulse response 
(Hessian) at each scattered point. It is theoretically precise 
for image points where PSFs are computed. However, PSFs 
computed on a sparse grid (to reduce interference) need to 
be interpolated to each imaging point and then deconvolved 
from the raw image point-by-point. The interpolation of 
PSFs and point-by-point deconvolution are challenging in 
practice and may sometimes cause inaccuracy and 
instability for areas with complex structures. 

Instead of deconvolving PSFs, matching-filter methods 
such as CHF deconvolve a demigrated/remigrated image 

) from the original image ( . The image used for the 
deconvolution is the weighted-stack of impulse responses 
for all the image points within a given spatial window. This 
means that CHF is inherently more stable than the PSF 
method, although it may not be able to fully compensate for 
unbalanced amplitude and limited bandwidth. In addition, 
as a guided filter in the curvelet domain, the CHF can 
effectively attenuate migration artifacts and other noise 
without smearing the image, like many post-migration 
denoise processes.

In both the PSF and CHF cases, the 3D spatial window 
needs to be large enough for a stable deconvolution. On the 
other hand, the deconvolution is preferably performed in a 
relatively small spatial window to better honor any local 
variations of the Hessian matrix. This means that migration 
artifacts and illumination patterns on the large scale may 
not be well handled by those two approaches. Iterative 
LSRTM based on full-window global minimization does 
not have this limitation.  

In practice, iterative LSRTM has not been widely used for 
subsalt imaging primarily because iterative LSRTM is 
computationally expensive due to its slow convergence rate 
(if converges at all) that stems from large discrepancies 
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LSRTM for subsalt imaging 

between the recorded data and acoustic Born-modeled data. 
Furthermore, a more theoretically accurate approximation 
of the inverse of the Hessian, iterative LSRTM, is 
inherently more sensitive to noise, internal multiples, 
velocity errors, and the source wavelet. Further research on 
iterative inversion methods is still required for iterative 
LSRTM methods to produce superior subsalt results over 
single-iteration methods. 

Conclusions

The raw RTM subsalt image obtained from the input data 
and the migration velocity model largely limits the 
performance of all the LSRTM methods. It is very difficult, 
if not impossible, to use any LSRTM methods to recover 
events that are completely unimaged due to very poor 
illumination and/or an inaccurate velocity model. A better 
input seismic data set can enhance the images in two ways: 
by providing additional subsurface information for imaging 
and by increasing our ability to derive a higher quality 
velocity model. A case in point is the advancement of full-
azimuth acquisition in the GOM, which not only leads to 
better subsalt images, but also produces higher fidelity 

velocity models than would be obtained from a wide-
azimuth data set. 

As counterintuitive as it seems, we may be able to use 
LSRTM to improve the velocity model, even though it 
assumes the velocity model is correct. One possibility 
might be to interleave LSRTM with key velocity model 
building steps, e.g, using the SOGs generated from CHF for 
better curvature picking and, in turn, better tomographic 
inversion. Of course, the computation of interleaving 
LSRTM with velocity estimation can be costly.  

LSRTM has shown promising impact on subsalt imaging. 
Through additional synthetic and field data tests, the 
subsalt imaging community can continue to improve the 
algorithms and bring LSRTM closer to its full potential. 
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Figure 1: BP2004 synthetic study: (a) velocity model used for modeling and migration; (b) reflectivity model derived from density and velocity 
model and used as the ground truth; (c) RTM image using forward modeling synthetic data; (d) image after PSF deconvolution; (e) image after 
CHF; (f) data-domain iterative LSRTM image; (g) amplitude decay curves (orange box in b) for images in b-f.

Figure 2: GOM field data example: Stacked images-(a) raw RTM using input data after shot and receiver deghosting; (b) image after stack-based 
CHF; (c) image after SOG-based CHF; (d) image after data-domain iterative LSRTM; and SOGs-(e) raw SOGs; and (f) SOGs after CHF. Gather 
curvatures marked by solid green lines remain unchanged before (e) and after (f) CHF. Dashed green lines indicate a curvature that can be easily 
picked using SOGs after CHF. The prospective Lower Tertiary interval is indicated by green up-down arrows on Figures 2c and 2f. 
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