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Near-surface velocity modeling using a combined inversion 
of surface and refracted P-waves

Abstract
We propose an innovative workflow based on the complemen-

tary use of Rayleigh waves alongside standard P-wave refraction 
tomography, which better depicts the shallow part of the near-surface 
P-wave velocity model. Our surface-wave processing sequence led 
to an S-wave near-surface velocity field that can be used as a 
constraint for P-wave tomography and can improve P-wave statics 
determination. Rayleigh waves are processed in three steps. The 
first step consists of an accurate frequency-dependent traveltime 
measurement for each selected source-receiver pair in which the 
phase difference between two adjacent traces is used to derive the 
phase velocity. Then, a frequency-dependent surface-wave velocity 
tomography is performed from the picked traveltimes. Finally, after 
surface-wave tomography, the frequency-dependent phase velocity 
volume output by the tomography is inverted to deliver an S-wave 
near-surface velocity model. This model is used to constrain the 
first-arrival P-wave tomography. To illustrate our method, we use 
a 3D narrow-azimuth land data set, acquired along a river valley. 
Strong lateral velocity variations exist in the shallow part, with 
slow velocities around the unconsolidated sediments of the riverbed 
and faster velocities in the consolidated sediments of the surrounding 
hills. A combined first-arrival tomography using the S-wave velocity 
model, the initial unconstrained refracted P-wave velocity model, 
and the original first arrivals is used to obtain a more accurate 
near-surface P-wave velocity model. This new approach led to a 
constrained P-wave velocity model from which primary statics are 
derived and then applied, leading to an improved image with better 
focusing and continuity of thin layers in the shallowest part.

Introduction
The estimation of geologically meaningful near-surface P-wave 

velocity models can be challenging on land surveys due to rapid 
lateral variation in near-surface structures. Approaches based on 
refracted P-waves, such as first-arrival traveltime tomography (Noble 
et al., 2009; Taillandier et al., 2011), usually lack resolution in the 
shallow part of the medium because of the horizontal nature of the 
diving waves, although recent advances in full-waveform inversion 
(Virieux and Operto, 2009) show promising results in that respect. 
To overcome this issue, surface-wave inversion has become increas-
ingly popular (Socco and Strobbia, 2004; Socco et al., 2010). Indeed, 
surface waves are very sensitive to lateral variations, especially in 
the shallowest parts of the near surface. An analysis may provide 
access to the S-wave velocity structure at depth, but it is difficult 
to link it with the P-wave velocity structure. 

We propose a new workflow where a combined P-wave tomog-
raphy better depicts the velocity contrasts in the near surface. Our 
proposed method’s effectiveness is demonstrated on a 3D narrow-
azimuth land survey acquired around a wide meandering river 
(Figure 1). A standard acquisition design was used, with a 20 m 
interval in the inline direction and 300 m interval in the crossline 
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direction for both source and receiver spreads. This method was 
used to compute a P-wave velocity model from which primary P-
wave statics are derived. We then explain in detail the surface-wave 
inversion workflow and the combined P-wave tomography. Finally, 
we show a comparison of two stack sections extracted from the 
survey around the river path — the first with primary P-wave static 
corrections computed from the standard, unconstrained P-wave 
velocity model; the second with corrections computed from our 
improved, constrained P-wave velocity model.

Refracted P-wave workflow
The refracted P-wave workflow consists of accurately picking 

first-break arrival times, then performing a nonlinear traveltime 
tomography (Zhang and Toksöz, 1998) to obtain a standard 
conventional near-surface P-wave velocity model (Figure 2a). 
First-arrival traveltimes tobs are picked for each trace (Figure 3a), 
then the tomography algorithm iteratively updates the near-surface 
velocity model c by minimizing a misfit function J (c) between the 
observed traveltimes tobs and modeled traveltimes t (c). Typically, 
a least-squares misfit function is used:

J (c) = 1
2

(t(c)− t obs )t (t(c)− t obs )  .                    (1)

Picking the first-arrival traveltimes is usually performed 
automatically due to the high number of traces involved and can 
be contaminated by some erroneous picks caused by high levels 
of noise in the input data. To reduce the influence of such erroneous 
picks in the minimization process, we use a more robust L1 misfit 
function in our applications:

J (c) = t(c)− t obs
1

= Σ ti (c)− tiobs .                   (2)

1CGG. http://dx.doi.org/10.1190/tle35110946.1.

Figure 1. Elevation map around the survey. It is a river valley surrounded by 
swamp terrain (main river channel denoted by red dashed line) bordered by 
small hills. The dashed black line A-B denotes the shot line used to illustrate the 
approach presented in this paper.



Special Section: Near-surface modeling and imaging November 2016     THE  LEADING EDGE      947

In this work, we employ an accurate eikonal solver based on 
the fast sweeping method (Noble et al., 2014) to compute the 
first-arrival traveltimes t(c) for a given velocity model c. The gradi-
ent  ∇J (c) of the misfit function is computed on-the-fly by back-
propagating the residuals along rays from the receiver points to 
the source, hence avoiding the need to build and store a very large 
Jacobian matrix (Taillandier et al., 2011). The misfit function J(c) 
is then iteratively minimized using a limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm 
(Nocedal and Wright, 2006), which uses gradients from previous 
iterations to build a computationally efficient approximation to 
the Hessian, allowing for better-quality model updates compared 
to previously employed steepest-descent schemes.

Although we implemented an eikonal-based P-wave tomography 
using a gridded velocity model, other 
modeling engines can be used — e.g., to 
employ layered or blocky models such as 
in Vesnaver et al. (2006). In this work, 
we used a grid spacing of 80 m in the 
inline and crossline direction and 20 m 
in the depth direction for the P-wave 
velocity model, and we added a smooth-
ing regularization to stabilize the inver-
sion. A 70 m depth slice through the 
obtained P-wave velocity model is shown 
in Figure 3b. Both main features (riverbed 
and surrounding hills) are easily identi-
fied, but the model lacks resolution to 
clearly identify lateral velocity variations 
around the river. Nevertheless, the intro-
duction of primary statics computed from 
this velocity model significantly improves 
the lateral coherency of the stack as shown 
in Figure 4. Figure 4a presents the raw 
stack along a section that follows the river 

path; figure 4b illustrates the improvement obtained by application 
of P-wave statics. The lateral coherency of the events is clearly 
improved (red arrows), but some parts of the stack section remain 
blurry (dashed circle). This is because of rapid shallow velocity 
variations that are not properly resolved by the employed P-wave 
tomography. Indeed, due to the deep reflection seismic acquisition 
design (360 m and 280 m interval for both source and receiver lines) 
and the fact that the 0–100 m offset class represents only 0.01% of 
the picked times, the refracted P-wave tomography used is not able 
to properly characterize structures and velocity variations in the 
shallowest part of the near surface. Weak ray coverages are observed 
in the first 100 meters (Figure 3c), indicating that the shallowest 
area of the P-wave velocity model is under-constrained and would 
restrict the statics resolution.

Figure 2. Flowchart of (a) a refracted P-wave modeling workflow and (b) surface-
wave modeling workflow.

Figure 3. (a) First arrivals observed along the receiver line A-B (see Figure 1). (b) The refracted P-wave velocity 
model obtained with the standard refracted P-wave modeling workflow. The red dashed line marks the river; 
surrounding hills are delimited by the white dashed line. (c) Ray coverage depth section along the river path 123 
where weak ray coverages (< 30%) are observed on the first 100 meters.

Figure 4. Stack section along the river path line 123 (map in top right corner). (a) 
Stack obtained without applying any static correction. (b) Stack obtained after 
application of primary statics derived from the conventional P-wave velocity model. 
The overall lateral coherency is improved (red arrows), but some parts remain blurry 
(dashed circle) due to rapid lateral variations in the near-surface structure.
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Surface-wave workflow
As shown earlier, there are complex lateral velocity variations in the 

shallow near surface. The computation of a reliable shear-wave velocity 
(VS) model therefore could bring valuable additional information to 
validate and better constrain the refracted P-wave velocity (VP) model. 
Our surface-wave workflow consists of frequency-dependent traveltime 
picking, followed by frequency-dependent traveltime tomography, and, 
finally, a stochastic depth inversion (Figure 2b).

First, conventional preprocessing is applied to separate surface 
waves from the recorded data (Le Meur et al., 2008) using the 
raw input data (Figure 5). This preprocessing is aimed at partially 
attenuating any spatial aliasing and enhancing the linearity and 
signal-to-noise ratio of the Rayleigh waves. Only short offsets 
(less than 1 km) are used for the frequency-dependent traveltime 
picking of the Rayleigh waves in order to ensure a robust picking 
of the most energetic surface-wave mode.

Accurate frequency-dependent traveltimes are computed for each 
selected source-receiver pair (first orange box in Figure 2). To do so, 
the principle of a multi-offset phase analysis (MOPA) described by 
Strobbia and Foti (2006) is used. The MOPA approach is a generaliza-
tion of the well-known spectral analysis of surface waves (SASW) 
(Nazarian and Stokoe, 1984) in which the phase difference between 
two adjacent traces is used to derive the phase velocity (Socco et al., 
2010). This offers an interesting alternative to a multistation approach, 
for example, the slant-stack or fk methods introduced in the 1980s 
(McMechan and Yedlin, 1981; Gabriels et al., 1987). Although these 
multistation approaches are able to identify all propagation modes, 
there remains the difficulty of picking the different modes with 
confidence, especially for noisy land data in which rapid lateral velocity 
variations are observed. Such approaches have been used successfully 
for shallow marine or ocean-bottom-node data (Zheng and Miao, 
2014) but not necessarily for land data. On the contrary, on onshore 
data, MOPA is able to accurately pick the most energetic propagation 
mode, which most often corresponds to the fundamental one. To 
demonstrate the effectiveness of this approach for computing fre-
quency-dependent traveltimes, we need to ensure that the dispersion 
curve on the most energetic mode is robust and accurate enough 
compared to conventional approaches.

The main assumption in the MOPA approach is that the modal 
phase for one single mode of propagation can be decomposed as:

ϕi (ω ,x) = −k(ω ).xi +ϕ0(ω ) ,                      (3)

where φi(ω,x) is the phase of the single mode of propagation, k(ω) 
is the associated wavenumber, φ0(ω) is the phase of the source, xi 

is the offset i, and ω is the angular frequency.
From equation 3, it appears that the phase-versus-offset data 

at a single frequency f = ω/2π can be used to estimate the wave-
number using a linear regression. Then, from the estimated k(ω) 
values, it becomes possible to compute the phase velocity as a 
function of frequency:

 V (ω ) = ω
k(ω )

=
2π f
k(ω ) .                            (4)

If we now combine N receivers and unwrap the phase, at each 
frequency, in the increasing offset direction, we obtain a system 
of equations that can be inverted in the least-squares sense (Strobbia 
and Foti, 2006). A robust estimation of the wavenumber and phase 
velocity is thus obtained. To control the quality of the fit to the 
linear model at every frequency, we used the coefficient of deter-
mination R2 (equation 5). This coefficient varies between 0 and 1, 
where a value of 1 indicates a perfect fit to the linear model, and 
a zero value indicates the absence of linearity. To improve the 
estimation of phase velocities for real land data sets, variable offset 
ranges and azimuthal sectors are introduced to maximize the fit 
to a linear model. Then, the whole problem turns into a maximiza-
tion process: for each azimuthal sector, the goal is to find the 
minimum offset i and maximum offset j that maximize:

R 2 i, j( ) =
Σk=i

j ϕk! −ϕ( )2

Σk=i
j ϕk −ϕ( )2

,                           (5)

where R2(i,j) is the coefficient computed at offset i and j.  ϕk
! is 

the predicted value of the phase at offset k, ϕ  is the average of 
the observed values, and φk is the observed value of the phase at 
offset k.

Then, the best phase/offset pairs are retained for determination 
of the phase velocity for selected frequencies, reducing the influence 
of phase unwrapping errors on the linear regression operation. A 
validation of this approach is performed using 2D synthetic data 
where we clearly identify the Rayleigh-wave fundamental mode 
and first higher modes (Figure 6a). To compare the dispersion 
curve obtained with the MOPA approach, the dispersion panels 
of all Rayleigh-wave modes are computed using a multistation 
slant-stack method (Figure 6b). In this synthetic data test, a 
perfect match is observed between the maxima of both dispersion 
curves corresponding to the fundamental mode (red superimposed 
curve for MOPA, Figure 6).

Finally, for every frequency, traveltime picks are derived from 
the computed phase velocities using the average distance between 
each selected source (i) and receiver ( j):

tij ω( ) =  !
xIJ
!

V ω( )
.                               (6)

Our picking strategy for a 3D narrow-azimuth survey involves 
all available source-receiver pairs (SRi) for each shot (S) and several 

Figure 5. Rayleigh waves observed along the AB shot line (see Figure 1) after 
extraction from the raw data shown in Figure 3a.
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azimuths (az). For every frequency (ω), traveltime picks TRaz (SRi,ω) 
are retained at each source-receiver midpoint value (Figure 7). 
All traveltime picks from all frequencies, sources, and receivers 
are then used to feed the surface-wave tomography.

For refracted P-wave velocities, the individual measurements 
made on discrete source-receiver pairs need to be generalized on 
the model grid. To handle the particularities of Rayleigh waves, 
the algorithm used is a modified version of refracted P-wave 

tomography. Although surface waves are the consequence of 
complex 3D wave interactions, the direct and inverse problem 
can be approximated in 2D. To take into account the surface-wave 
dispersion evident in frequency-dependent picking, the tomog-
raphy is performed frequency by frequency (second orange box in 
Figure 2b). For each frequency, we used a grid with a spacing of 
80 m in each inline and crossline direction to describe the Ray-
leigh-wave velocity model. Each 2D-based tomography inversion 
(associated with a given angular frequency ω) reveals the averaged 
Rayleigh velocity between the free surface and its penetration 
depth. The obtained 3D volume VS(x,y,ω) is then introduced in 
the vertical depth inversion procedure. The benefit of such to-
mography is illustrated on a frequency slice at 4.5 Hz (Figure 8a), 
which corresponds to the shallow part of the near surface. After 
the Rayleigh-wave traveltime tomography, the river channel is 
well identified (dashed red line), with fairly slow-phase velocity 
on the surface-wave tomography (~200 m/s) and higher-phase 
velocity (~600 m/s) corresponding to the root of the surrounding 
hills (white dashed line). Strong depth coverages are observed in 
the first 200 meters (Figure 8c), indicating that the shallowest 
area of the S-wave velocity model is well-constrained.

The last tool used in the surface-wave inversion workflow is 
a stochastic depth inversion (third orange box in Figure 2). During 
this step, a depth-dependent S-wave velocity cube VS(x,y,z) is 
computed from the frequency-dependent surface-wave velocity 
volume VR(x,y,ω). For each node (x,y) of the tomography grid, the 
surface-wave dispersion curve VR(ω) is inverted to obtain a vertical 
depth S-wave velocity profile VS(z). Few nonlinear approaches 

have been described to obtain a depth 
S-wave velocity profile (Hou et al., 2016; 
Maraschini and Foti, 2010). We decided 
to implement a Markov-chain Monte 
Carlo algorithm (Shapiro et al., 1997), 
associated with a forward modeling 
method based on the formulation of the 
relation between a vertical S-wave veloc-
ity profile and associated surface-wave 
dispersion curves as proposed by Schwab 
and Knopoff (1972). The initial model 
is a layered S-wave velocity profile, com-
posed of three constant-velocity layers 
(Figure 9a, red curve) on top of an infi-
nite half-space. A random perturbation 
is applied to either the depth or the veloc-
ity of the layer to obtain a candidate 
model, and the associated surface-wave 
dispersion curve is deduced. This candi-
date dispersion curve is then compared 
to the observed dispersion curve VR(ω). 
If the distance between them is small 
enough, the candidate dispersion curve 
is accepted, and the corresponding model 
is used to generate the next random 
model; if not, it is rejected, and we reuse 
the previous accepted model and con-
tinue perturbing it until an acceptable 
new model is found. This operation is 
iterated until a suff icient number 

Figure 6. (a) A synthetic shot with Rayleigh-wave fundamental mode (F) and 
higher modes. (b) Dispersion panel computed from a multistation slant-stack 
approach; all dispersion curves from the Rayleigh waves are clearly identified. 
The dispersion curve computed by MOPA is superimposed in red on the dispersion 
panel. (c) Picking strategy used for a 3D shot. After splitting into four azimuths, 
MOPA was performed using the selected source and receiver pairs and their 
associated offset values. On azimuths 1 and 2, a zoomed section shows how each 
source and receiver pair from different azimuths are computed.

Figure 7. Fundamental-mode Rayleigh-wave picks located at the midpoint location for all source-receiver pairs 
along the shot line A-B. High frequencies (which sample shallow structures) are plotted at the top, while lower 
frequencies (which sample deeper layers) are plotted at the bottom. A high lateral variability is observed at higher 
frequencies, while variations are smoother for lower frequencies.

Figure 8. (a) Frequency slice at 4.5 Hz after eikonal-based 2D traveltime tomography. (b) Depth S-wave velocity 
model at 70 m obtained after Markov-chain Monte Carlo inversion. (c) Depth coverage section along the river path 
123 where the maximum ray coverage is observed on the first 200 meters.
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(typically a few thousand) of suitable 
S-wave velocity profiles are obtained at 
each node (x,y) of the tomography grid 
(Figure 9, gray curves). The final S-wave 
velocity cube VS(x,y,z) is the set of vertical 
S-wave velocity profiles that best explain 
the dispersion curves observed at their 
respective nodes (x,y) (Figure 9a, blue 
curve). The final depth S-wave velocity 
model is obtained after a stochastic inver-
sion as illustrated in Figure 8b. The river 
channel location is also clearly identified 
on the depth slice at 70 m where slow 
S-wave velocities (~250 m/s) are sur-
rounded by faster S-wave velocities (~350 
m/s), which correspond to the hills 
shown on the elevation map (Figure 1).

Combined refracted P-wave 
tomography

We observe that the depth S-wave 
velocity model (Figure 8b) provides more 
accurate spatial resolution in the shal-
lowest part. On the 70 m depth slice, 
the river channel’s path is clearly identi-
fied on the depth S-wave velocity model 
but is more difficult to define on the 
standard refracted P-wave velocity model 
(Figure 3b). At this point, it is interesting 
to compare the resolution obtained from both workflows in the 
shallowest part of the near-surface. The difference observed on 
the final results is explained by the ray and depth coverage of both 
tomography methods (Figure 3c and Figure 8c). Indeed, the 
resolution of the refracted P-wave tomography is weaker in the 
first 100 m due to the seismic acquisition design (figure 3c). 
Conversely, this design is sufficient for surface-wave processing. 
Considering that the penetration depth of Rayleigh waves is linked 
to the frequency range (from 2 to 10 Hz in this case) and its as-
sociated phase velocities (from 600 to 200 m/s in this case), we 
can expect to obtain a better resolution than refracted P-waves 
in the first 200 m (Figure 8c). 

Taking these observations into account, our strategy of com-
bining P-waves and Rayleigh waves is simple: instead of using a 
smooth and underdetermined VP for the first 100 meters of the 
velocity model, we prefer to use VS information from the surface 
wave inversion with a regional VP/VS ratio estimated from the 
overlap zone between the VP and VS velocity model (here a ratio 
of 3 is used). Although this ratio remains inaccurate, it helps 
provide additional structural information on the shallowest part. 
Ideally, uphole measurements and/or any other local VP /VS ratio 
information would be very useful and relatively easy to introduce 
in such a combined method. Unfortunately, such data were not 
available on this survey. In this case study, the additional details 
brought by an S-wave velocity model enhance the spatial resolution 
of the final refracted P-wave model by better constraining the 
tomography inversion. The deepest part of the velocity model is 
kept unchanged below the maximum depth penetration observed 
on the depth S-wave velocity model (figure 10), which is linked 

to the lowest observed frequency and associated velocity of the 
surface waves. To do so, the original refracted P-wave first arrivals 
are used to compute the final constrained refracted P-wave velocity 
model. The results obtained in the shallowest part (here at the 
same 70 m depth slice) after the combined workflow are high-
lighted in Figure 10b. Indeed, small velocity variations from the 
S-wave velocity model are retained on the constrained refracted 
P-wave velocity model (Figure 10b). Now, a finer spatial resolution 
around the river channel and a change in the background velocity 
are obtained, while higher velocity is maintained under the hills 
(delimited by the white dashed line).

The higher lateral resolution observed after the combined 
inversion needs to be validated on seismic data through the 
application of primary static corrections. It allows us to visualize 
the impact of a new set of primary static corrections from the 
combined workflow. Our main zone of interest is the shallow 
part of the stack section (up to 1.5 s), where the vertical raypath 
assumption is still valid. Primary static corrections computed 
from the standard but unconstrained refracted P-wave velocity 
model show a major improvement in the focusing of events 
compared to the raw stack (Figure 4a). Application of the new 
set of primary statics derived from the constrained refracted 
P-wave velocity model implies an even better lateral continuity 
of the thin layers (Figure 11, black circle) and also solves cycle 
skipping of main events (Figure 11, red arrows). This 3D example 
demonstrates the benefit of the combined first-arrival tomography 
using information from the depth S-wave velocity model to 
better characterize the shallow part of the refracted P-wave 
velocity model.

Figure 10. (a) Refracted P-wave velocity model at 70 m obtained after a standard first-arrival traveltime 
tomography. (b) The constrained refracted P-wave velocity model at 70 m obtained after the combined inversion.

Figure 9. (a) VS velocity model; in red the initial model, in gray all generated models, in blue the best-fit model. (b) 
Rayleigh-wave dispersive curve; in red the measured dispersion curve, in gray the computed curves associated with 
the generated models, in blue the curve associated with the best-fit model.
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Figure 11. Stack along the river path 123 with (a) the application of primary statics 
derived from the standard but unconstrained refracted P-wave velocity model 
and (b) with the application of a new set of primary statics from the constrained 
refracted P-wave velocity model, where a better lateral continuity in the thin layers is 
observed (black circle) and also cycle-skipping is solved (red arrows).

Conclusions
To improve on standard P-wave refraction tomography, we 

propose a combined workflow based on the complementary use of 
Rayleigh waves and refracted P-waves to better characterize the 
near-surface. Geologically meaningful S-wave and refracted P-wave 
velocity volumes could be obtained even on narrow-azimuth land 
data. An accurate frequency-dependent traveltime picking followed 
by a frequency-dependent surface-wave velocity tomography has 
brought improvements to the subsequent stochastic inversion in 
terms of stability and lateral consistency. More reliable depth S-wave 
and refracted P-wave velocity models bring valuable information 
to obtain a constrained refracted P-wave velocity model via a 
combined first-arrival tomography. These benefits apply to 3D land 
data, even when not well-sampled spatially. This workflow con-
tributes to a better understanding of the near surface, leading to 
an accurate P-wave velocity model for use in subsequent processing 
steps such as elastic full-waveform inversion or depth imaging. 
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