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Extracting seismic uncertainties from tomographic velocity 
inversion and their use in reservoir risk analysis

Abstract
Structural information in subsurface seismic images is critical 

for reservoir delineation, reserve estimation, and well planning. 
However, by its very nature, it is also uncertain. One cause of the 
image uncertainty is the migration velocity model that directly 
affects the position of migrated events, both laterally and vertically. 
(The term “velocity” is meant in the broad sense; i.e., it also includes 
the anisotropy parameters.) We present a method that accounts 
for uncertainties in a velocity model estimated by tomography 
and translates them into the migrated domain. Standard-deviation 
attributes on target horizon positions or layer thicknesses are 
extracted. The method includes quality controls for validating the 
estimated uncertainty attributes before integration with other 
downstream or interpretative information. The method is dem-
onstrated on a North Sea area covered by data from multiple 
seismic surveys. We observe that uncertainties increase with model 
complexity or depth and decrease as the illumination diversity 
increases. The computed uncertainty maps constitute a valuable 
source of information for hierarchizing (both qualitatively and 
quantitatively) different areas in the survey. For the purpose of 
reservoir risk analysis, we combine our technique with other 
information (e.g., interpretation uncertainties) to map how un-
certainties in the depth of the structural spill point impact the 
gross rock volume (GRV) estimation of a reservoir.

Introduction
All processes used to infer information about a real-world 

system containing noise are subject to uncertainties. This is no 
different in the field of seismic where information in acquired 
seismic data often is used to drive a model-based inversion. An 
example of such a process (and the one we will discuss in this 
paper) is velocity-model estimation via tomography. (Note that 
the term “velocity” is meant in the broad sense; i.e., it also includes 
the anisotropy parameters.) Here, it is well known that the input 
data, modeling, and a priori or regularization inversion elements 
are not an entirely accurate description of the real earth. For in-
stance, residual moveout information, namely the deviation of an 
event in a common-image gather from the ideal flat situation, 
carries an uncertainty related to both the size of the wavelet of the 
picked event and the intrinsic data quality that varies by location 
in the data. Thus, the subsurface model estimated by tomography 
(or other inversion methods) is not the true subsurface velocity, or 
even the optimum migration model, but is instead a representation 
of our knowledge about them. In fact, Tarantola (2005) describes 
the model obtained from a tomographic process as the “maximum-
likelihood” (or most probable) model with respect to the supplied 
inversion data, assumed physical model, and a priori information. 
Hence, tomography-model uncertainties can be considered as 
“error bars” around this “maximum-likelihood” model. If all 
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underlying assumptions are met, then clearly such error bars 
represent vital information in two respects: (1) the reliability of 
the inversion result itself and (2) what the true or optimum model 
could be because it is expected to be within these error bars.

A migration with the maximum-likelihood tomographic 
velocity model can be considered as giving the maximum-likeli-
hood migrated image, with uncertainties in this velocity model 
contributing to uncertainties in the migrated domain. Such un-
certainties directly affect lateral and vertical migrated event posi-
tions. Important information for reservoir exploration and develop-
ment is the uncertainty in the structural aspect of the seismic 
image, in particular the key target horizon (reflector) positions. 
The information derived from our tomography-based uncertainty 
analysis helps quantify horizon and fault-position errors, as well 
as layer-thickness errors. This information can serve several pur-
poses in risk evaluation of a potential hydrocarbon prospect:

• It improves our understanding and confidence in the final 
depth-migrated image, discriminating between more accurately 
imaged areas and areas with reduced confidence in the image.

• Once translated into depth standard-deviation maps, the 
uncertainties can be integrated with other information for 
risk assessment of, for example, depth prediction, reservoir 
delineation, reserve estimation, GRV evaluation, and well-
placement optimization.

In the first part of this paper, we present our method for es-
timating uncertainties in the tomography velocity model. The 
method provides qualitative and quantitative information associ-
ated with the positioning errors in seismic depth-migrated images. 
The method is then applied to data from a North Sea area covered 
by multiple seismic surveys, and we subsequently interpret the 
results. Finally, using this data set we discuss an application of 
the estimated depth uncertainties to highlight the influence of 
the structural spill point on a reservoir’s GRV estimation.

Method for estimating uncertainties in a tomography model
We start this section with some clarifications of our use of 

the term “uncertainties”:

• We assume the maximum-likelihood model has been obtained 
by a nonlinear slope tomography with tilted transverse isotropy 
(TTI) (Montel et al., 2010; Guillaume et al., 2013). Uncertain-
ties relating to velocity-model parameters can be evaluated 
by developing a probability density function (PDF) around 
this maximum-likelihood model.

• The PDF is assumed to have a Gaussian distribution in a 
sufficiently large interval around the maximum-likelihood 
position (Tarantola, 2005).

1CGG. http://dx.doi.org/10.1190/tle360200127.1.
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• We consider a 68.27% confidence interval that represents a 
standard-deviation confidence interval for a Gaussian PDF.

• Uncertainties in the spatial position of migrated reflectors are 
assumed to be due largely to uncertainties in the tomography 
velocity model used by the imaging algorithm. Migration 
data uncertainties relating to, for example, noise, multiples, 
or variable illumination are not taken into account for now.

For the final goal of reservoir risk analysis, we wish to compute 
standard-deviation-like quantities on horizon positions (x, y, 
depth). Our method involves three steps:

1) Generate a series of tomographically consistent model per-
turbations that are within a standard-deviation confidence 
interval. Our tomography model space is described by cardinal 
cubic B-splines (with a range of 500,000 to 50 million pa-
rameters). We use nonlinear slope tomography (Guillaume 
et al., 2013) where the linear system to be solved is made up 
of both a data misfit term and all additional constraints. From 
this system, we can generate equiprobable velocity-model 
perturbations by exploring the envelope of the standard-
deviation confidence interval. The envelope represents a 
“hyper-ellipsoid contour” of the PDF (Duffet and Sinoquet, 
2006). This step involves the tomography a posteriori covari-
ance matrix (Pratt and Chapman, 1992; Zhang and 
McMechan, 1995; Tarantola, 2005) and a random sampling 
of the contour. The a posteriori covariance matrix (defining 
the uncertainty range) contains, in particular, information 
relating to data quality and tomography constraints.

With respect to the assumed model and the tomography 
process, the method accounts for the model subspaces “re-
solved” and “unresolved by the tomography.” The “unresolved” 
subspace is defined by the basis vectors corresponding to the 
smallest eigenvalues (Pratt and Chapman, 1992). We can 
separate the uncertainties relating to the subspace resolved 
by the tomography from the total uncertainties spanning the 

full model space (namely the union of the resolved and un-
resolved subspaces). The total uncertainties highlight, among 
other things, the quality of the illumination. Uncertainties 
relating to the subspace resolved by the tomography are a 
subset of the total uncertainties that give complementary 
information in better-illuminated areas. This concept will be 
illustrated using a North Sea data example.

Other strategies for exploring the model space are already 
used in the seismic industry. For example, Osypov et al. (2013) 
propose a method to sample the PDF of the solution of a 
tomographic problem constrained by steering filters.

2) Migrate target horizons in the computed perturbed models. 
The key target horizons are kinematically migrated at zero offset 
for every equiprobable perturbed velocity model computed from 
the tomography-derived equations (Duffet and Sinoquet, 2006). 
For each horizon, this leads to a set of possible (x, y, depth) loca-
tions of this horizon that are used in subsequent analyses.

3) Compute “standard deviations” on horizon position. The 
maximum possible variation in each horizon position is related 
to the standard-deviation confidence interval on the depth-
migrated positions. Hence, we can compute standard-devia-
tion-like depth attributes that account for the information in 
a posteriori covariance matrix of the tomographic inverse 
problem and of the kinematic migration problem (in the linear-
ized approximation). The same method can be applied to the 
x and y components of the horizon positions: lateral displace-
ments are computed by breaking down the horizon into locally 
coherent reflecting events (characterized by their position and 
dip) and by tracking their individual lateral displacements 
from one kinematic migration to the other.

North Sea real data example
The method described above is now illustrated on a North 

Sea real data example. Four different surveys (labeled A–D in 

Figure 1. Combined coverage of the four different surveys (A–D): (left) illumination map, where the hot and cold colors indicate high and low illumination, respectively, 
and (right) acquisition bin fold, with a maximum fold of ~75. Note that the shooting direction of each survey is indicated by the direction of the associated arrow.
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Figure 1) were acquired over the years 
by different contractors. Each survey 
was shot with a different main acquisi-
tion direction or azimuth (illustrated by 
the arrows in Figure 1a) and its own 
specific recording configuration ranging 
from one to six cables. A specific pro-
cessing challenge for such a multisurvey 
project is to provide a seamless merged 
volume in terms of amplitude, phase, 
and positioning. Fortunately, in our 
case, the matching process was eased 
by significant overlaps of double-azi-
muth coverage between the surveys. A 
triple overlap is also noticeable between 
surveys A, C, and D (Figure 1a). Note 
that survey C is more recent than survey 
A and features a “no data” zone around 
a rig location (highlighted in Figure 1b).

A geologically plausible prestack depth migration model was 
built using multilayer nonlinear slope tomography (Guillaume et 
al., 2013), and the resulting maximum-likelihood model showed 
excellent well ties at wells distributed homogeneously throughout 
the survey area. To initiate the tomography-derived uncertainty 
analysis, 500 tomographically consistent and equiprobable per-
turbations were generated around the maximum-likelihood veloc-
ity model within a standard-deviation confidence interval. All 
key horizons (namely the layer boundaries in our multilayer to-
mography context) were repositioned in the perturbed models by 
zero-offset kinematic migrations. A representative subset of 
horizon realizations is displayed on the velocity model allowing 
a first glimpse at our “confidence interval” (Figure 2). It shows 
how the morphology of the main horizons can vary and how some 
localized features can appear, move, or even disappear from one 
realization to another while honoring the inversion data input to 
the slope tomography.

Statistical attributes can be mapped onto the horizons to allow 
easier quality control of the global results. Figure 3 shows an 
example of these attributes at the top chalk level where, in general, 
we observe that the depth range of different realizations tends to 
increase with depth and structural complexity in the overburden. 
A clear correlation can be observed between the illumination map 
in Figure 3a and the total uncertainty map in Figure 3c. Specifi-
cally, areas with overlapping surveys that provide multiazimuth 
illumination show lower uncertainties. In addition, lower-fold 
areas such as the rig zone affecting survey C cause relatively higher 
uncertainties correlated to the reduction in tomographic rays (and 
angular diversity) in this area. Also, as would be expected, we 
observe larger total uncertainties on the survey edges.

Figure 3d shows the contribution of uncertainties associated 
with the subspace resolved by the tomography. This attribute, 
among others, highlights how illumination diversity drives the 
discrimination power of the tomographic process, with a re-
duced uncertainty clearly visible along the corridor of overlap 
between surveys C and D, these two surveys having perpen-
dicular acquisition directions. We also mention that a correla-
tion can be observed between the large values in the eastern 

part of survey C and the increased depth of the top chalk 
horizon in Figure 3b.

For further insight into these results we note that, on one 
hand, the total uncertainty highlights the acquisition illumination 
and structural complexity. On the other hand, the subspace re-
solved by the tomography exhibits interesting low-amplitude, 
spatial variations of the uncertainty. In well-illuminated areas, 
those uncertainties will also vary with the reliability and richness 
of the picked residual moveout information that feeds the tomog-
raphy. Interestingly, survey B features shorter cables, and the lack 
of long-offset recording coincides with a clear increase in uncer-
tainty in the southern edge of the area (Figure 3d). Similarly, the 
most recent survey D with a higher number of cables (six) resulted 
in less populated short offsets at outer cables: as a result, we observe 
an increased uncertainty in the northwest corner (Figure 3d) 
when compared to the average uncertainty on, for example, survey 
C, which had only three cables.

Figure 4 shows 3D displays of the top and base salt horizons 
overlain with the total depth standard deviation. From this, we 
see larger total uncertainties in poorly illuminated areas such as 
the steeply dipping structural flanks and observe that the uncer-
tainties computed for these dipping events also depend on the 
shooting direction relative to these structures. Again, specifically, 
the steep salt flanks in Figure 4a and the faults in Figure 4b 
consequently have significantly larger uncertainty values. This is 
even more critical when the shooting direction is not perpendicular 
to the strongest dips (Figure 4b): Maximum raypath diversity is 
obtained in the acquisition direction (which usually corresponds 
to the direction of maximum complexity in the subsurface), thus 
reducing velocity uncertainties in that direction.

Risk analysis from uncertainty information on GRV estimation
Uncertainties are not absolute values but need to be translated 

into something useful for a given target. The information derived 
from the tomography uncertainty analysis must fit into a larger 
uncertainty evaluation targeting a particular problem (Coléou, 
2001). Attribute maps of the standard deviation for selected 
horizons can be computed for the depth and, also, for other 

Figure 2. The maximum-likelihood prestack depth migration velocity model overlain with a subset of 20 (among 
several hundred) random migrated horizons from the perturbed models.
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Figure 3. Top chalk horizon attributes: (a) illumination map, (b) horizon depth, (c) total depth uncertainties (the z-direction standard deviation), and (d) standard 
deviation from the contribution of the subspace resolved by the tomography. Note that panels 3c and 3d use the same color map but with different scale ranges.

Figure 4. 3D displays of (a) top salt and (b) base salt overlaid with the total depth uncertainty (the z-direction standard deviation). Note the increased z-direction 
standard deviation along the steep dipping structural flanks and faults where small lateral positioning errors result in large depth uncertainties.
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attributes such as lateral x, y positioning or thickness. Computed 
standard-deviation maps are all the more relevant as they can be 
directly integrated in the risk assessment of, for example, depth 
prediction, GRV evaluation, pore-pressure prediction, and well-
placement optimization, to help reduce the exploration risks.

One element in the uncertainty of the structural closure of an 
exploration prospect is the uncertainty in the interpretation. How-
ever, this is also influenced by the uncertainty in the image, which 
obviously relates to the uncertainty in the tomography model that 
generated this image, impacting the spill point depth and position, 
and therefore the GRV estimation. For a specific area of interest 
in our North Sea example, Figure 5 shows the probability map to 
be above the spill point and the corresponding GRV histogram. 
Uncertainties in the tomographic velocities are used to generate 
the different realizations along with other sources of uncertainties 
to obtain these results.

In this example, we combined the z-direction standard devia-
tion for the top reservoir surface (evaluated from the velocity 
uncertainties) with the interpretation uncertainties to generate a 
number of possible realizations of the top reservoir surface. The 
prospect, a four-way dip-closure, is bound by a spill point. The 
spill point is computed for each realization, giving the maximum 
depth of the hydrocarbon contact, the outline of the prospect, and 
the corresponding GRV. This result enables us to produce a map 
of the probability of the reservoir top to be above the contact (left 
of Figure 5). The probability attribute is overlaid onto the top 
reservoir surface of the maximum-likelihood model. The histogram 
of the GRV values for the realizations for subsequent reserve 
uncertainty evaluation and economic risk analysis is shown top 
right of Figure 5. In our example, the uncertainty analysis leads 
to gross volume values between 62 and 102, with P10 (minimum 
case) at 67, P90 (maximum case) at 89, and P50 (base case) at 78. 

In this exploration case, where no well has yet been drilled on the 
prospect, the geometry of the prospect is the main ranking criterion 
for in-situ reserve evaluation as net-to-gross, porosity, saturation, 
and other information needed have not yet been measured. The 
velocity uncertainties have a critical place in this process.

It is important to deliver uncertainties in such a way that they 
can be integrated with other information in a risk-assessment study. 
The best solution among the various integration possibilities available 
is to adapt the uncertainty attributes to the specific requirements 
of the problem to hand. For example, this uncertainty attribute 
could be the standard deviation of an event’s vertical depth, as il-
lustrated in our example, or a layer thickness, but also errors on the 
lateral position of a sealing fault.

Conclusion and outlook
We have presented a method for: (a) computing uncertainties 

in tomography velocity models derived from surface seismic data 
and (b) translating them into the migrated image domain. Standard 
deviations on horizon depth positions or layer thicknesses are 
extracted from statistical analysis of the different uncertainty 
realizations. We have illustrated this technique on a North Sea 
data example involving a velocity model with tilted transverse 
isotropy and shown that the computed uncertainties do indeed 
follow the anticipated behavior caused by expected inaccuracies 
in the tomographic process. Specifically, these uncertainties in-
crease with model complexity or depth and decrease as the illu-
mination diversity increases. As such, these uncertainties constitute 
a valuable source of information for qualitative comparison between 
different areas in the survey. Finally, we have demonstrated 
quantitative integration of these uncertainties with other informa-
tion for reservoir risk analysis, in particular, depth prediction and 
gross rock volume evaluation. Seismic uncertainty analysis is an 

Figure 5. Probability of prospect outline being above the spill point (colored; red is a probability of one) and GRV histogram. The horizontal axis of the histogram defines 
the GRV value classes (units are not shown), and the vertical axis defines the number of realizations per class; realization quantiles are indicated by the red bars.
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expanding area of active research in both academia and industry. 
There is growing acceptance of the benefits that it can bring in 
risk estimation during the exploration and development cycle. 
We believe this work represents a step along this path. 
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