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Abstract

Complex overburdens often distort reservoir images in terms of structural positioning, stratigraphic reso-
lution, and amplitude fidelity. One prime example of a complex overburden is in the deepwater Gulf of Mexico,
where thick and irregular layers of remobilized (i.e., allochthonous) salt are situated above prospective reser-
voir intervals. The highly variant salt layers create large lateral velocity variations that distort wave propagation
and the illumination of deeper reservoir targets. In subsalt imaging, tools such as reflection tomography, full-
waveform inversion, and detailed salt interpretation are needed to derive a high-resolution velocity model that
captures the lateral velocity variations. Once a velocity field is obtained, reverse time migration (RTM) can be
applied to restore structural positioning of events below and around the salt. However, RTM by nature is unable
to fully recover the reflectivity for desired amplitudes and resolution. This shortcoming is well-recognized by the
imaging community, and it has propelled the emergence of least-squares RTM (LSRTM) in recent years. We have
investigated how current LSRTM methods perform on subsalt images. First, we compared the formulation of
data-domain versus image-domain least-squares migration, as well as methods using single-iteration approxi-
mation versus iterative inversion. Then, we examined the resulting subsalt images of several LSRTM methods
applied on the synthetic and field data. Among our tests, we found that image-domain single-iteration LSRTM
methods, including an extension of an approximate inverse Hessian method in the curvelet domain, not only
compensated for amplitude loss due to poor illumination caused by complex salt bodies, but it also produced
subsalt images with fewer migration artifacts in the field data. In contrast, an iterative inversion method showed
its potential for broadening the bandwidth in the subsalt, but it was less effective in reducing migration artifacts
and noise. Based on our understanding, we evaluated the current state of LSRTM for subsalt imaging.

Introduction
We can consider recorded seismic data to be the result

of forward-modeling experiments through subsurface
structures. To image the reflectivity of the subsurface,
we need to reverse the effects of the forward wave propa-
gation. In other words, we need to apply an inverse of the
forward-modeling operator on the recorded data to ob-
tain the desired reflectivity. The exact inverse is difficult
to obtain and is therefore approximated in all standard
migration algorithms, such as Kirchhoff migration and
reverse time migration (RTM). For subsalt imaging, in
which the presence of large velocity contrasts and steep
dips is common, RTM has become the migration method
of choice. RTM approximates the inverse of the forward
wave propagation with an adjoint operation that forms
the image from a combination of the forward-propagated
source wavefield and the backward-propagated receiver
wavefield (Baysal et al., 1983; Etgen et al., 2009; Zhang
and Zhang, 2009). The accuracy of the approximation can
be negatively impacted by spatial aliasing, limited aper-
ture, and noise in the input data, as well as by nonuniform
illumination due to a complex overburden (Claerbout,

1992). As a result, RTM images may contain migration
artifacts with limited bandwidth and uneven amplitudes.
For example, Figure 1a shows a cross section of the zero-
angle reflectivity image computed from the SEG SEAM I
model in which the amplitude along each subsalt horizon
is uniform. However, the RTM image in Figure 1b shows
amplitude dimming in the lower circle due to illumination
loss caused by the overburden salt body and migration
artifacts in the upper circle likely due to sparse shot sam-
pling and irregular illumination. Overall, the resulting
RTM image does not perfectly resemble the original re-
flectivity model (Figure 1a), particularly in the subsalt
region. The deviation is due to the approximation made
in the inverse of the forward-modeling operator. The
approximation error increases with structural complexity
and thus tends to produce larger deviations in the subsalt
region.

Least-squares migration (LSM) was proposed to im-
prove the approximation of the inverse of the forward-
modeling operator through either an iterative inversion
(Tarantola, 1987; Schuster, 1993; Nemeth et al., 1999) or
a single-iteration inversion (Hu et al., 2001; Rickett,
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2003; Guitton, 2004; Lecomte, 2008). In recent years,
least-squares RTM (LSRTM) has attracted considerable
attention. The often-cited benefits of LSRTM include
more correct image amplitudes due to the ability to
compensate for illumination loss caused by overburden
and acquisition effects, more coherent images due to
the ability to reduce migration artifacts, and higher im-
age resolution (vertically and laterally) due to the ability
to remove the source signature and source/receiver
ghost, as well as migration stretch (Wong et al., 2011;
Dong et al., 2012; Dai et al., 2013; Zhang et al., 2013;
Zeng et al., 2014). Not surprisingly, LSRTM is being rec-
ognized as the next-generation technology for subsalt
imaging in the deepwater Gulf of Mexico (GOM).

Theory
In this section, we discuss the general theory of LSM

that is applicable to commonly used migration methods,
including RTM. We also compare how different LSM
methods invert the Hessian matrix (Table 1) appearing
in the inversion formula. The Hessian matrix is a square
matrix of the second-order derivatives of the objective
function with respect to the reflectivity model. Because
the Hessian matrix is closely related to the seismic res-
olution and illumination of the subsurface, computing
the inverse of the Hessian matrix is the key to LSM in
terms of illumination compensation, noise (migration
artifacts) reduction, and resolution enhancement. After
discussion of existing iterative and single-iteration LSM
methods, we outline an image-domain single-iteration
LSM implementation in the curvelet domain.

LSM (Tarantola, 1987) inverts for a reflectivity model
m to fit the recorded data d0

f ðmÞ ¼ 1
2
kd0 − Lmk2; (1)

where f is the cost function to be minimized and L is the
linearized Born modeling operator or demigration oper-
ator. If LTL is invertible, the least-squares solution for
equation 1 can be written as

m ¼ ðLTLÞ−1LTd0; (2)

where LT is the migration operator and LTL is the so-
called Hessian matrix H. The key to LSM is to obtain
the inverse of H; however, the computation and storage
of H are not feasible for real 3D problems. Alternatively,
different approximate solutions, such as gradient-based
iterative approaches (Schuster, 1993; Nemeth et al., 1999;
Tang, 2008) and single-iteration approaches (Hu et al.,
2001; Rickett, 2003; Guitton, 2004; Lecomte, 2008), have
been pursued.

Iterative least-squares migration
Regardless of the invertibility ofH , equation 1 can be

iteratively solved by either steepest descent or conju-
gate gradient methods and the gradient can be written
as

g ¼ LT ðd0 − LmÞ: (3)

For one iteration of LSM, the computation of g in
equation 3 costs one Born modeling (i.e., demigration)
and one migration. If more than 10 iterations are needed
for convergence, the costs of data-domain iterative LSM
are at a level of more than 20 migrations (part of the
computation for Born modeling and migration may
be shared to save some costs). This can be computa-
tionally prohibitive for modern 3D marine streamer
data that use RTM extensively for model building as
well as for final migrations that compute images with
moderate to high frequency.

Single-iteration least-squares migration
As discussed above, direct (equation 2) or iterative

(equation 3) inversion methods are either impractical
or expensive. The cost-reducing alternative is to
approximate the Hessian matrix in a single iteration. Le-
comte (2008) and Fletcher et al. (2016) propose to ob-
tain the Hessian matrix using point spread functions
(PSFs). The PSF method computes the impulse re-
sponse (Hessian) on a coarse grid (to reduce interfer-
ence between PSFs) of scattered points. The Hessian
for every image point is then obtained by interpolating
between computed PSFs. LSM results are achieved by
deconvolving computed PSFs from the raw migra-
tion image.

Guitton (2004) proposes to use nonstationary match-
ing filters to approximate the inverse of the Hessian
matrix in one iteration. In Guitton’s approach, Born
modeling is first performed using the raw migration

Figure 1. SEAM I synthetic study: (a) reflectivity section of
the SEAM I model and (b) RTM stack image.
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image m0 and the existing velocity field to derive syn-
thetic data d1 ¼ Lm0, which is then remigrated to ob-
tain a new image:

m1 ¼ LTLm0: (4)

Next, nonstationary matching filters (or inverse Hes-
sian filters) F are found by minimizing the following
cost function:

f ðFÞ ¼ 1
2
km0 − Fm1k2: (5)

After obtaining F , the image-domain single-iteration LSM
image can be written as

m ¼ Fm0: (6)

Guitton (2004) computes multicoefficient matching
filters in the spatial domain (Rickett et al., 2001). How-
ever, different events may have different illumination
patterns. Therefore, it is desirable to decompose the in-
put image for more accurate derivation of inverse Hes-
sian filters.

Curvelet-domain Hessian filter
The curvelet transform decomposes seismic events

into different orientations and frequency scales. Using
the curvelet transform, we can extend the idea of a
guided image filter proposed by He et al. (2013) to for-
mulate a curvelet-domain Hessian filter (CHF). The cost
function of the image-domain CHF can be written as

f ðsÞ ¼ kCðm0Þ − sCðm1Þk2 þ ϵksk2; (7)

where C is the curvelet transform operator, s is the
matching filter, and ϵ is a weighting factor for the Tikho-
nov regularization. The final output image is

m ¼ C−1ðjsjCðm0ÞÞ; (8)

where C−1 is the inverse curvelet transform operator
and | | is used to remove the phase and make the match-
ing filter a zero-phase filter.

To compensate for offset-dependent illumination
patterns, we further extend CHF to surface-offset gath-
ers (SOGs) (Giboli et al., 2012):

f ðssogÞ ¼ kCðm0Þ − ssogCðmsog
1 Þk2 þ ϵkssogk2; (9)

msog ¼ C−1ðjssogjCðmsog
0 ÞÞ: (10)

Here, the same raw stacked image ðm0Þ is used to de-
sign the guided filter for each offset class. We note that
the zero-phase filter is important for retaining event cur-
vatures.

In summary, the key to LSM is to obtain an effective
inverse of the Hessian matrix. LSM can be formulated
either in the data domain, where the least-squares fit-
ting is performed on recorded unmigrated data, or in
the image domain, where least-squares fitting is per-
formed on the migrated image. Because a direct inver-
sion is not practical and iterative inversion is expensive,
approximation of the Hessian matrix from a single iter-
ation of Born modeling and migration becomes attrac-
tive. Similar to the iterative approach, single-iteration
LSM can also be implemented in either the data or im-
age domain. Among image-domain single-iteration LSM
methods, PSF (Lecomte, 2008; Fletcher et al., 2016) and
matching filters (Guitton, 2004) are two current ap-
proaches. We proposed the CHF scheme that incorpo-
rates a curvelet transform into the matching filter
method to better separate events in terms of structural
dip and frequency. In addition, we extended CHF from

Table 1. Comparison of different LSM methods: d0 is the recorded data, m0 is the raw migration image, LT is the
migration operator, L is the Born modeling operator, C is the curvelet transform operator, and C−1 is the inverse
curvelet transform operator.

Domain
Approximate inverse

Hessian method Theory
No. of

iterations

Data domain Iterative Cost objective: 1
2
kd0 − Lmk2;

gradient: gi ¼ LTðd0 − LmiÞ
Output image: miþ1 ¼ mi þ αigi

>10

CHF (single iteration) Migration/modeling: d1 ¼ LLTd0
Cost objective: kCðd0Þ − sCðd1Þk2 þ ϵksk2

Output image: m ¼ LTC−1ðjsjCðd0ÞÞ

1

Image domain Iterative Cost objective: 1
2
km0 − LTLmk2;

gradient: gi ¼ LTLðm0 − LTLmiÞ
Output image: miþ1 ¼ mi þ αigi

>10

PSF deconvolution
(single iteration)

Modeling/migration: m1 ¼ LTLm 0
(m 0: point diffractors model) Output image: m ¼ m0m�

1

m1m�
1
þϵ

1

CHF (single iteration) Modeling/migration: m1 ¼ LTLm0

Cost objective: kCðm0Þ − sCðm1Þk2 þ ϵksk2
Output image: m ¼ C−1ðjsjCðm0ÞÞ

1
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the migrated stack to SOGs to deal with offset-depen-
dent illumination patterns.

Application to the SEG SEAM I synthetic data
One of the main benefits of LSRTM is its ability to

compensate for illumination loss and produce ampli-
tudes closer to the true reflectivity than standard RTM
does. Using the SEAM I synthetic data, we examine the
illumination compensation effects on stacked images
generated from data-domain iterative LSRTM (hereafter,
“data domain” is omitted), PSF deconvolution, and
SOG-based CHF (hereafter, “SOG-based” is omitted). In
addition, SOGs from raw RTM and those after CHF are
compared to gauge the amplitude compensation for
common-image gathers.

The SEAM I model contains realistic velocity/density
contrasts with complex salt geometries that create a va-
riety of subsalt illumination issues. It is an ideal synthetic
data set for our initial evaluation of different LSRTM al-
gorithms. To avoid the “inverse crime” (the same model-
ing engine used for input and LSRTM), we modeled the
input data using acoustic full-wave modeling instead of
acoustic Born modeling, the modeling engine of all the
LSRTM algorithms in this study. The modeling frequency
is 10 Hz, the shot grid is 150 × 150 m, whereas the
receiver grid is 100 × 100 m, and the maximum offset is
8 km in inline and crossline directions. For simplicity, we
used the true velocity model and synthetic input data
without surface multiples or added noise.

Figure 2a shows the raw RTM stack and Figure 2b
shows the RTM stack after 20 iterations of iterative
LSRTM. Figure 2c and 2d shows the images after sin-
gle-iteration LSRTM: PSF deconvolution and CHF, re-
spectively. Overall, all three LSRTM methods produced
similar stacks (Figure 2b–2d) with visually balanced

amplitudes in the subsalt. To quantify the amplitude
restoration of different approaches, in Figure 2e, we
compared the corresponding amplitude decay curves ex-
tracted from Figure 2a to 2d with the true reflectivity
(Figure 1a: convolving with the 10 Hz wavelet used to
compute the input data). While raw RTM gave relatively
weaker amplitudes at deeper depths due to uncompen-
sated illumination loss, all three LSRTM methods pro-
duced similar amplitude decay curves as compared with
the ground truth.

In the raw RTM SOGs (Figure 3a), we observe that the
gathers on the left side have weak amplitudes at near
offsets but normal amplitudes at mid and far offsets. This
is due to the wavefields or raypaths contributing to the
near offsets traveling through a small salt body in the
overburden, whereas the raypaths of mid to far offsets
undershoot the small salt body. This is not the case
for the gathers on the right, which contain weak ampli-
tudes across all offsets due to illumination loss from a
much larger overburden salt body. As expected from
LSRTM, gathers after CHF (Figure 3b) show better bal-
anced amplitudes across offsets as well as gather groups.

From these SEAM I subsalt synthetic LSRTM tests,
we have the following summary:

1) All three LSRTM methods — iterative LSRTM, PSF,
and CHF — produced similar stack images and sub-
salt amplitude decay curves (Figure 2e) that matched
the decay curve of the reflectivity model (the ground
truth). However, under closer inspection, none of the
three methods recovered events that are completely
missing (the red arrow in Figure 2a) on the raw RTM
stack. Such events have very low or no illumination
from the given acquisition and, therefore, cannot be
modeled through the Born modeling and restored
by LSRTM.

Figure 2. SEAM I synthetic study: (a) RTM image using the forward-modeled synthetic data, (b) iterative LSRTM image, (c) PSF
deconvolution image, (d) CHF image, and (e) amplitude decay curves (orange box in [a]) for images in Figures 1a and 2a–2d.
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2) Iterative LSRTM produced results comparable with
those from the two single-iteration methods after ap-
proximately 20 iterations. This is consistent with
Guitton’s (2004) conclusion that a single-iteration
LSRTM is a cost-effective alternative to iterative in-
version.

3) As proposed by Fletcher et al. (2016), we computed
multiple PSFs of interleaving grids to improve spa-
tial sampling for interpolation while ensuring suffi-
cient isolation of PSFs. This scheme was effective
but decreased the efficiency of the PSF approach.
We also used salt damping to minimize deconvolu-
tion instability around salt bodies. Furthermore, we
found that a reweighting-based sparse deconvolu-
tion can be used to control noise (Sacchi, 1997).

4) In addition to its computational efficiency, CHF is
appealing because it extends the illumination com-
pensation from stack to SOGs, which potentially can
be used for amplitude variation with offset analysis
and velocity model building.

We note that this test is not completely realistic be-
cause we did not include surface-related multiples or
noise in the synthetic data and we used the correct
velocity model for the test. The reality and possibilities
of LSRTM for subsalt imaging would be better answered
using field data in a more realistic context, i.e., with an
inevitably inaccurate velocity model and abundant
noise from residual multiples.

GOM field data example
A wide-azimuth streamer data set from the Keathley

Canyon area of the GOM was selected for the field data
test. Although the area is known for well-defined salt
geometries and overall good data quality, subsalt im-
ages in this region still suffer from uneven illumination,
visible migration artifacts, and suboptimal resolution.
The input data underwent typical preprocessing to re-
move noise, ghost energy, multiples, etc.

When compared with the raw RTM image (Figure 4a),
iterative LSRTM (Figure 4b) produced more continuous
subsalt events, particularly within the white circle in Fig-
ure 4a. Similar to the results of the synthetic test, subsalt
amplitudes in the field data are also more uniform after
LSRTM. The resolution of the subsalt re-
gion in Figure 4b appears to be higher
than the raw RTM stack (Figure 4a).
However, part of the higher resolution
in the iterative LSRTM comes from
boosted noise content and migration ar-
tifacts that are likely caused by overfit-
ting of some events that were present
in the input data but cannot be correctly
modeled by acoustic Born modeling. We
stopped the test at the 10th iteration de-
spite the presence of primary signal still
in the data residual because the noise
level was increasing with the number of
iterations.

The CHF image (Figure 4c) also shows balanced
amplitudes and more continuous events in the subsalt.
Unlike the iterative LSRTM, CHF did not noticeably al-
ter the vertical resolution or frequency content. This is
because we did not model the ghost when generating
the demigration/migration image because the input
had been deghosted, and we used a spiky source wave-
let for demigration and migration. As a result, the demi-

Figure 3. SEAM I synthetic study: (a) raw RTM surface-offset
gathers, (b) LSRTM-CHF surface-offset gathers, and (c) LSRTM-
CHF stacked image. The red lines in (c) mark the gather loca-
tions in (a and b).

Figure 4. GOM field data example: (a) rawRTM image, (b) iterative LSRTM image,
and (c) CHF image. The white circle marks a weak amplitude zone due to illumi-
nation loss, and the white arrow marks the prospective Lower Tertiary interval.
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gration/migration image (m1) has frequency content
similar to the raw RTM image (m0). In addition, the de-
sign of CHF discourages overboosting of frequency con-
tent with a low signal-to-noise ratio (S/N) in the raw
RTM image. Alternatively, one can use a band-limited
source wavelet (not necessarily a true one) instead of
a spiky one in Born modeling and subsequent migration
to broaden the bandwidth through wavelet deconvolu-
tion. However, if the S/N is low, using a band-limited
wavelet will inevitably boost noise as well.

The quality of subsalt images is judged by many fac-
tors, such as S/N, event and structural coherency, ampli-
tude consistency, and resolution. Within the prospective

Lower Tertiary interval (denoted by the white up-down
arrows in Figure 4a), CHF performed better in terms of
noise suppression, whereas the iterative method yielded
higher resolution but an increased noise level. Both
methods were effective at balancing uneven amplitudes
in the subsalt, as was also shown in the synthetic test.

Figure 5b shows raw RTM SOGs (msog
0 ) at locations

indicated by the yellow lines in Figure 5a, and Figure 5d
shows the same gathers after CHF (msog). We observed
that SOGs after CHF have a higher S/N and more con-
tinuous subsalt events across all offsets while retaining
the event curvatures. As counterintuitive as it seems,
we may be able to use CHF SOGs to improve the veloc-
ity model, even though LSRTM assumes the velocity
model is already correct. One possibility is to include
CHF into key velocity model building steps, e.g., using
the SOGs generated from CHF for better curvature
picking and, in turn, better tomographic inversion. Of
course, the computation of incorporating CHF in veloc-
ity estimation can be costly.

Figure 5c shows the stack image after CHF. The im-
age has more balanced amplitudes and fewer migration
artifacts compared with the raw stack image in Fig-
ure 5a. Note that events in the light blue circle were
not well-imaged by RTM, possibly due to velocity errors
and/or inaccurate salt interpretation. As a result, CHF
was unable to fully recover the amplitude dimming.

Figure 6a shows a stratal slice of a reservoir surface.
The amplitude pattern extracted from the raw RTM im-
age appears rather random due to irregular illumination
and migration artifacts. Figure 6b shows the same stra-
tal slice after CHF. We observed that the higher ampli-
tudes are clustered toward a structural high (depth
contours indicated by the black curves in Figure 6).
The red curves in Figure 6c show our interpretation
of a subsalt channel based on the CHF image.

Discussion
Using SEAM I synthetic data and a GOM field data set,

we demonstrated that image-domain single-iteration and

Figure 5. GOM field data example: (a) raw RTM stack image,
(b) raw RTM surface-offset gathers, (c) LSRTM-CHF stack im-
age, and (d) LSRTM-CHF surface-offset gathers. The orange
lines in (a and c) mark the gather locations in (b and d).

Figure 6. The GOM field data example: (a) stratal slice of raw RTM image (green, high amplitude; purple, low amplitude), (b) stratal
slice of LSRTM-CHF image, and (c) stratal slice of LSRTM-CHF image overlaid with our interpretation of subsalt channel (red curves).
The black curves are the reservoir horizon contours, and the vertical green lines indicate threewells with the only goodwell in themiddle.
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data-domain iterative LSRTM methods can reduce un-
even subsalt amplitudes. Some consistent observations
from both tests are as follows: (1) Single-iteration meth-
ods, including PSF and CHF, are far more computation-
ally efficient than iterative LSRTM, (2) CHF images are
cleaner than those from iterative LSRTM, and (3) iterative
LSRTM has a slow convergence rate with migration
noise and artifacts increasing with each iteration. Next,
we try to explain some of these observations and pro-
pose possible ways to improve iterative LSRTM.

Some notes on CHF
Compared with Guitton’s approach, CHF takes the

advantage of the curvelet transform that decomposes
seismic events into different orientations and frequency
scales and therefore better handles frequency- and angle-
dependent illumination patterns. Compared with PSF
approaches, matching-filter methods such as CHF de-
convolve a demigration/migration image (m1) from the
original image (m0). The image used for the deconvolu-
tion is the weighted stack of impulse responses for all
image points within a given spatial window. This means
that CHF is inherently more stable than PSF deconvolu-
tion, which deconvolves a point-wise impulse response.
This also means that it may not be able to fully compen-
sate for the amplitude distortion that is modeled in the
demigration/migration image. In addition, many other
factors, such as nonfocusing due to velocity error and
transmission loss, and elastic effects that cannot be ad-
dressed by methods using acoustic Born modeling, can
prevent CHF from giving the correct amplitude. There-
fore, at best, CHF can only produce a better amplitude
response than the raw migration.

CHF results are usually cleaner than those from
other methods. This is because (1) CHF applies match-
ing filters on RTM SOGs instead of RTM stacks; thus, it
has a better likelihood of attenuating migration artifacts
that are inconsistent with offsets; (2) CHF is relatively
insensitive to velocity error, inaccurate modeling algo-
rithms, inaccurate source wavelet, and noise in the in-
put data; and (3) the curvelet transform is sparse, and
thus it can implicitly filter out random noise.

The PSF approach approximates the inverse of the
Hessian matrix by a round-trip demigration/migration
using a point-diffractor reflectivity model, whereas the
CHF approach achieves the same round-trip effect using
a migrated image as the reflectivity model. Theoretically,
this round-trip demigration/migration can give the same
illumination information for any reflectivity model (i.e.,
one can even use random noise as the reflectivity model).
However, in practice, we found that using the migrated
image as the reflectivity model serves as an image guide
for random noise attenuation during the filter design in
the curvelet domain. Furthermore, we observed that us-
ing a cleaner imagewithmore balanced amplitudes as the
reflectivity model gives better results in terms of illumi-
nation compensation and noise reduction.

As mentioned previously, CHF is performed in over-
lapping 3D spatial windows. Each window needs to be

large enough for a stable filter derivation. However, a
small spatial window is preferred to better honor any
local variations in the Hessian matrix. This means that
migration artifacts and illumination patterns on a large
scale may not be well-handled by CHF. In theory, iter-
ative LSRTM that is based on full-window global mini-
mization does not have this limitation.

Some notes on iterative LSRTM
Theoretically, iterative LSRTM is more accurate in

solving the inverse of the Hessian matrix, but it is inher-
ently more sensitive to inaccurate modeling algorithms,
velocity errors, incorrect source wavelets, and noise
from residual multiples and other wave modes that can-
not be modeled by acoustic Born modeling. To date,
iterative LSRTM has not been widely used for subsalt
imaging primarily for two reasons that stem from large
discrepancies between the recorded data and acoustic
Born-modeled data: (1) It is computationally expensive
because of its slow convergence rate (if it converges at
all), and (2) it creates false images or artifacts to explain
some of the events in the input data that cannot be mod-
eled by acoustic Born modeling.

One way to speed up iterative LSRTM is to use data
encoding (Dai et al., 2014). However, the trade-off
between efficiency and image quality can be highly
dependent on the acquisition geometry and structural
complexity. Another option is to precondition the gra-
dient using PSFs or inverse Hessian filters (Huang et al.,
2016). To reduce artifacts, a sparse transform can be used
to regularize the gradient or the total image (Dutta et al.,
2016). Encouraged by its performance on illumination
compensation and noise reduction, we believe CHF may
be a good candidate to precondition iterative LSRTM to
improve convergence rate and reduce migration noise.

Conclusion
The performance of LSRTM is largely limited by the

quality of the raw RTM image. It is very difficult, if not
impossible, for any LSRTM method to recover subsalt
events and structures that are completely missing on
the raw RTM image. The absence of subsalt events on
the raw RTM image can arise from a combination of fac-
tors, such as very low or no illumination, severe noise
contamination, or an inaccurate velocity model. In sub-
salt imaging, a high-quality input data set not only pro-
vides better subsalt illumination and noise attenuation,
it is also conducive to better velocity model derivation.
Naturally, using a good input data set can increase the
chances of success of LSRTM. A case in point is the ad-
vent of full-azimuth acquisition in the GOM, which has
not only led to better subsalt illumination and noise can-
cellation but also produced higher fidelity velocity mod-
els than would be obtained from a wide-azimuth data set.

LSRTM has shown promising results in subsalt imag-
ing. It improves the amplitude response and reduces mi-
gration artifacts for stacked images and gathers by
compensating for irregular illumination due to complex
overburdens and acquisition footprints. This can also
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potentially benefit subsalt quantitative interpretation
and time-lapse imaging. Through additional synthetic
and field data trials, the subsalt imaging community will
continue to improve the algorithms and turn more of
the possible benefits of LSRTM into reality.
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