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Machine learning systems open up access to large volumes of 
valuable information lying dormant in unstructured documents

Abstract
Like many other types of data in the energy industry, well 

data stored electronically can be divided into two categories: 
(1) data stored in relational or object databases that are highly 
structured and (2) data located in documents in various formats 
(TIFF, JPG, PDF, XLS, etc.) that are typically gathered in 
folders in a semistructured or unstructured form. Typically, 
these data break down into 20% structured data versus 80% 
semi- or unstructured data; this figure is in line with what is 
observed for other types of data across the industry. This situation 
affects the ability to make informed decisions since geoscientific 
software and risk-assessment analytic systems only operate on 
structured data. Current practices to extract data and metadata 
from unstructured documents involve a mainly manual and 
costly process. Data model limitations of the most prevalent 
databases are a further hindrance to the capture of unstructured 
data. We discuss a feasibility study to access the 11,500 well 
headers and 450,000 documents from the United Kingdom 
Continental Shelf (UKCS) that were released by Common Data 
Access Limited (CDAL — a wholly owned subsidiary of Oil 
and Gas UK, funded by 55 operators to share subsurface E&P 
data) as part of its 2016 Unstructured Data Challenge initiative. 
A cost-effective solution based on emerging machine learning 
technology “taught” and guided by data-management experts 
can support the reliable indexing and cataloging of these forms 
of data, paving the way for much more reliable E&P business 
decisions in the future.

Data is critical to E&P operations
Following the sharp fall in oil prices in 2014, it is now even 

more economically vital for the E&P industry to fully leverage 
existing information to maximize the recovery of producing fields 
and improve the performance of exploration drilling activities.

In mature exploration and production provinces, such as the 
North Sea, as well as in frontier areas, such as the Atlantic Margins 
or the Irish Sea, vast quantities of data and hundreds of thousands 
of files and documents have been collected over the past decades. 
Initiatives taken to optimize the management of existing fields 
and to evaluate new exploration opportunities can benefit from 
the knowledge gained during past decades as a result of earlier 
drilling and formation evaluation activity. In a study titled “The 
business value case for data management — A study,” (Hawtin 
and Lecore, 2011) commissioned by CDAL and undertaken in 
collaboration with Schlumberger, one conclusion was that between 
25% and 33% of oil company value creation can be reasonably 
estimated to be attributed to data. To maximize this value creation 
from knowledge currently stored in unstructured formats, new 
tools are needed that can cost-effectively identify, extract, and 
make the required data accessible.
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For member companies working in the UKCS, for example, 
CDAL releases well header and associated documents. Data in 
LAS, LIS, and DLIS file formats easily transfer into the various 
structured database systems and application repositories used by 
operators. However, vast quantities (76% of the CDAL document 
and file collection) of unstructured files and documents consisting 
of scans of paper documents in TIFF, JPG, or PDF formats and 
associated reports and tabulations in Microsoft Excel and Word 
formats (XLS and DOC formats, respectively) do not fit into the 
databases. These are typically stored in a tree of hierarchical folders 
that make it possible to locate them but not directly use their 
contents. Since the content of these files and documents includes 
information such as porosity, permeability, pressure tests, and 
geochemical analysis, geoscientists and E&P companies that do 
not effectively access this information introduce additional risk 
and uncertainty into their interpretations and models. To alleviate 
this problem, appointed data release agents of the UK’s Oil and 
Gas Authority (OGA) have, over the past three decades, systemati-
cally manually extracted selected data from these documents and 
made them available to the industry as nonexclusive data products. 
Without this work, the ratio of structured to unstructured data 
is evaluated at 20/80. While it is probably not realistic to extract 
efficiently every piece of information from unstructured documents, 
achieving an extraction of 75% of that data would tilt the ratio 
of usable to unusable data from 20/80 to 80/20.

Until recently, the extraction of important data and metadata 
from unstructured files was done manually. Productivity was 
observed to be low, with a typical performance of 120 to 180 
documents per day per person. If we consider the 450,000 UKCS 
documents released by CDAL as part of its 2016 Unstructured 
Data Challenge initiative, this would translate to 2500 to 3750 
person days, or US$3 million to US$4.5 million. This type of 
work requires significant domain expertise to understand the data 
and documents and make correct decisions when faced with 
ambiguous data. The whole process would need to be repeated if, 
in the future, an additional set of data needed to be extracted 
from the same set of documents.

It is understandable that companies balk at making this sort 
of investment in time, resources, and money, with no clear metric 
of the added value at the time of project inception. Nevertheless, 
some companies have embarked on such projects. In time, they 
demonstrate value in terms of both time reductions in searching 
for and accessing data and in decision-making, where access to 
critical data, that would otherwise have been unavailable, influ-
enced the decision. However, the time constraints of individual 
projects often preclude performing data extraction on a set of 
documents. Automation, operated by data-management experts, 
seems to be the only cost-effective and time-efficient solution to 
this problem, but the variability of the documents, the quality of 
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scanning, and the organization of mate-
rial within reports or spreadsheets have 
been formidable challenges to achieving 
a computerized solution.

An emerging technology: Machine 
learning

The variability of documents is 
significant but still subject to patterns 
and similarities that make them deci-
pherable to the human eye. Therefore, 
a pattern-recognition technology that 
aims at replicating human behavior is 
well suited to solving the problem. The 
process used by humans to approach 
the task of identifying and verifying 
data for extraction is empirical. A 
computer system that teaches itself to 
emulate the decision process of the 
human mind will be much quicker at converging on a usable 
solution than the traditional process of explicitly programming 
an extraction system.

Machine learning is one of the fastest-growing domains 
of computer technology in recent years. Recognizing the po-
tential for machine learning technologies to revolutionize data 
indexing and cataloging for E&P files and documents, a ma-
chine learning system (MLS) was developed that could be 
taught and operated by data-management experts to handle 
the cataloging of data and indexing using metadata (Figure 1). 
As the name implies, an MLS learns without being explicitly 
programmed. The learning process itself is supervised by one 
or more data-management experts who initially perform the 
task to be automated — in our case, the extraction of informa-
tion from scanned documents and Microsoft Office files. The 
MLS observes their actions and decisions and builds a reference 
system that models these actions. During subsequent automated 
operations by the MLS, experts modify or invalidate any wrong 
decisions made by the MLS. These corrections are registered 
by the MLS and update the model, which over time increases 
the system’s reliability and success ratio. Our primary goals 
were to significantly lower costs and ensure execution within 
a time span consistent with a project aiming at a review of a 
field or exploration area.

Two inputs are required to operate the MLS:

• A set of input data. In our example, the documents related to 
UKCS wells, which are a mixture of semistructured (LAS, 
LIS, DLIS), unstructured scans (TIFF, JPG, PDF), or un-
structured documents (XLS, DOC).

• An initial learning model (ILM), which consists of a set of 
identified text patterns related to the metadata to be extracted 
and to the taxonomy used to classify the documents. The 
results of the automated extraction will improve in line with 
the number of tagged patterns available to the ILM. The 
content of the ILM is generated during the training phase of 
the process.

We will now review some technologies that are essential to the 
workflow, namely optical character recognition, indexing, catalog-
ing, quality control (QC) and training, and the learning model.

Optical character recognition (OCR)
For scanned documents or nontext-searchable PDF, we first 

need to convert the image into text wherever text can be identified 
and properly interpreted into characters. This technology has been 
around for several decades and is mature. Our MLS integrates a 
commercial third-party product, considered to be one of the best 
in this domain. Given that well documents pose particular chal-
lenges to OCR systems, due to their complexity we developed 
both preprocessing and postprocessing steps to assist in generating 
text files that retained some of the layout information needed by 
the machine learning process to apply pattern recognition.

Classification based on indexing
The MLS starts by building a document classification using 

the contents of documents in the data set. The quality of this 
automated classification was demonstrated in the results obtained 
during our participation in the 2016 Unstructured Data Challenge 
organized by CDAL to compare available methods and technolo-
gies. Our automated process analyzes the content of documents 
to build its classification, and in this case, we were able to compare 
to the classification produced by many North Sea operators over 
decades of collaboration within CDAL. The CDAL taxonomy 
that has been used over time to classify the documents consists 
of 11 classes that segregate data and document types or formats 
(e.g., scanned logs, scanned reports, digital logs) — in other words, 
the “containers of the information” — and 67 subclasses that 
segregate specific data domains (e.g., core analysis, well tests, 
cementation reports) — in other words, the “content.” Since some 
“containers” are specific to some “content,” the combination of 
the classes and subclasses creates 80 categories on which the MLS 
has been trained to automatically classify the documents (Figure 2). 
We ran our MLS on the wells from a few UKCS quadrants (quads 
132 and 8) and produced an index that was a match in 85% of all 

Figure 1. Machine learning system general flowchart.
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cases. The 15% failure rate was due to 
underrepresented categories that did 
not have enough items to be identified. 
Further training or a modification to 
the taxonomy would resolve these issues 
(Figure 3).

Generating the catalog
Following the indexing of each 

document based on content, the MLS 
attempts to recognize the metadata 
chosen by the operator as defined in the 
learning model. The detection process 
matches as closely as possible a group of 
characters from the original document 
with a specific pattern within the learn-
ing model. We perform this task using 
a support vector machine (SVM) (Vap-
nik, 1999). Several methods for informa-
tion extraction exist (Su et al., 2015; 
Gogar et al., 2016; Zhong et al., 2016), 
but we have found a sparse text representation applied in conjunction 
with SVMs to be appropriate, especially when only a small number 
of documents are available for training.

The detection process starts by identifying metadata candidates 
in the native-format text-searchable file or one that results from 
OCR processing. Using “total drillers depth” as an example, each 
positive float value in the text file is considered as a candidate for 
that metadata value. A set of features is associated with each of 
the candidates. Examples of features to be considered are character 
font, page number, the count of similar candidates in the same 
document, and the surrounding words and their Euclidian dis-
tance. The features enable the location of each of the metadata 
candidates within a hyperspace similar to the one of the learning 
model. The role of the SVM, at this level, is to distinguish between 
the “good” and “bad” candidates by defining the best boundary 
(linear or polynomial) between two areas of the hyperspace where 
the candidates are located (Figure 4).

Work to weight or define the more discriminant features to 
better characterize the candidate has been done but must be 
improved. Our initial results validated the fact that the surrounding 
text is a good feature to classify the candidates (e.g., coordinate 
values are frequently close to the words “lat,” “latitude,” “long,” 
“longitude,” x, y, etc.), but features such as the page number are 
also very useful at discriminating between candidates (we know 
intuitively that the first occurrence of a well name in a well report 
typically occurs on the first few pages).

One benefit of this method is that each identification is 
awarded a detection confidence factor. This value is defined by 
the inverse of the Euclidian distance between the model and the 
candidates. In the event of a candidate being considered as “bad” 
by the SVM, its confidence factor will be negative. To facilitate 
a review of the results and to help in the QC process, each metadata 
item is stored with its confidence factor and the location within 
the document from which it was extracted.

As we did for the document classification, we compared the 
automated cataloging done by the MLS with the manual cataloging 

done over time by the operator on the two UKCS quadrants. 
Eighty percent of the results matched for the automated detection 
with a confidence level of above 50. This was equally true for 
alphabetical metadata, such as the operator name, reference datum, 
and well status, as it was for numerical values such as coordinates, 
water depth, or total depth.

In the event of a discrepancy between the manual extraction 
and the MLS extraction, the cause was found to be either an 
erroneous manual extraction (5% of cases) or an erroneous detection 
(15% of cases).

We were able to verify that the percentage of incorrect detec-
tions decreases as the learning model matures during the QC 
phase following result validation and refutation. This confirms 
that the longer the MLS is used in production the better the 
results become.

Figure 3. Automatic indexing by a machine learning system.
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Figure 2. Treemap displaying the CDA taxonomy used to classify the well-related documents.
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In addition to QC of the existing CDAL well-header database 
using the unstructured data set, we saw the possibility of extracting 
more metadata than has been done in the past. Metadata, such 
as the location of the casing shoe, were extracted with success on 
the same two quads. This is a good illustration of the flexibility 
of an MLS to adapt to changing industry needs in terms of 
metadata extraction as the life cycle progresses from exploration 
to decommissioning.

Training and QC
The confidence factor is a critical element of the user interface 

geared toward QC. We initially use a simple color code to indicate 
whether the confidence level for each item is above or below the 
threshold of “acceptable” confidence. Those flagged below the 
level then can be investigated, and corrections can be made. The 
QC interface also allows for the grouping of extracted items by 
well bore, so that it is possible to compare the value extracted for 
a particular data object from different documents and files. It is 
not uncommon for metadata items that, in principle, should be 
identical across all documents to have differing representations 
and values.

On checking data and metadata values below the threshold 
of acceptable confidence in the original files and documents, the 
data-management expert has a choice of several actions:

• Validation: the reading had low confidence but is in effect 
correct. The learning model will be updated with additional 
contextual elements that will result in a higher confidence 
level should a similar layout be encountered in future extrac-
tion runs.

• Refutation: the metadata is wrongly assigned or irrelevant; 
again, the context around the error is memorized in the 
learning model, such that similar patterns will be ignored in 
future extraction runs.

• Deletion: the detected metadata and associated patterns are 
abandoned and therefore will not be used positively or nega-
tively in the next extraction runs.

• Alternate selection: if the desired metadata is available else-
where in the document, the user indicates that location, and 
the learning model memorizes the context such that it will 
positively identify the correct metadata in future runs.

Note that the QC step is highly desirable in the early days of 
applying the learning model to a particular set of data. As con-
fidence levels increase through a number of QC cycles, a point 
can be reached where the percentage of high-confidence extractions 
is sufficient to be able to skip the QC process. This is a case-by-case 
decision as there is a risk involved in skipping the QC steps al-
together. However, the reality of project deadlines and limited 
resources can dictate such a decision.

The evolving learning model
The learning model is the cornerstone of any machine learn-

ing system. It embodies the patterns, both positive and negative, 
that drive metadata identification. The learning model is the 
sum of all the past experiences made with the MLS and all the 
QC work performed by data-management experts to correct 
and improve results.

Our MLS uses an independent learning model for each data 
item. This explains why, in our system, different metadata items 
show different confidence levels: this can be attributed to greater 
complexity, higher variability, or fewer instances from one data 
item to another. These factors affect the speed with which a 
learning model matures over a number of runs.

Regarding the initial learning model — i.e., the inception of 
a new data item not previously part of the MLS runs — we have 
developed a robust methodology for two different approaches:

• User-guided inception: the operator adds the new data item 
to the classification and explicitly directs the MLS to the 
localization of the correct value in all the document and file 
types where it can be found; this process is quite time-con-
suming, but it creates an ILM with very detailed positive 
patterns. However, it will lack any negative patterns.

• A heuristic detection process of metadata with known values 
derived from, for example, an existing database compiled 
from documents that have been scanned and manually pro-
cessed. This heuristic approach feeds the learning model 
faster and does so by creating not just positive patterns but 
also negative patterns. Time must be spent performing QC 
on the results, as there is a high probability that some false-
positive patterns or false-negative patterns may have been 
generated in the process.

Running a machine learning system
Various stages of the typical workflow involve compute-inten-

sive steps, most notably the OCR and the pattern detection calcula-
tions, which comprise large matrix inversions. The decision was 
taken early on in the design of the system to make the various 
computation steps independent of each other. The design of the 
MLS was done using the MapReduce architecture, which means 

Figure 4. Search for the best boundary (vector) to separate candidates in a 
feature hyperspace of two dimensions (from https://commons.wikimedia.org/wiki/
File:Svm_separating_hyperplanes.png).
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that we achieve a linear relationship between computer power and 
execution speed. This makes the application a very good fit for 
execution in the cloud, where resources can be modulated according 
to data volumes. However, this benefit can tail off for the upload 
of very large collections, which will be very time-consuming. The 
cloud is therefore the best fit for small- to medium-sized collections. 
Larger collections are best addressed using local resources, prefer-
ably Hadoop or alternatively a high-performance-computing 
platform, or, in some instances, a single computer.

A hybrid version is in development that will combine the benefits 
of local execution for access to documents and OCR with execution 
of compute-intensive MLS tasks on a dedicated machine.

Early results from real data sets
In addition to the work completed for CDAL’s 2016 Unstruc-

tured Data Challenge, the MLS system is also being used in-house. 
Basin and reservoir studies benefit from accelerated and reliable 
document indexing and the extraction of well information. Since 
the machine learning was initially trained on North Sea data and 
has been enriched by the results of the CDAL challenge, the best 
information extraction results are obtained in this region.

The MLS system has been used successfully in other parts of 
the world where English is the working language (e.g., Australia) 
because terminology is mostly identical and many of the documents 
have similar layouts and flows. The situation is more complex for 
countries or regions with dominant languages other than English 
(e.g., Latin America — Spanish/Portuguese) or where both the 
language and the alphabet are a challenge (e.g., Russian and 
Cyrillic in Russia). For the same alphabet, it is not necessary to 
start a new learning model, and we have made good progress with 
French and Spanish data sets. Tests on Cyrillic are due to start 
in early 2017.

A limitation lies in the quality of scans, which affects the per-
formance of the OCR system, and also in the use of handwritten 
data fields, which are much more error-prone and, in many instances, 
impossible to identify and read reliably. Our experience to date shows 
that by using the MLS, we have a reliable outcome for 70–80% of 
the data. Our data-management experts complete the remaining 
20–30% using established and robust traditional manual methods.

Alternative solutions
The use of text-pattern detection by an MLS is not the only 

way to index and catalog large collections of files and documents. 
An established alternative is to perform full-text indexing after 
the OCR stage. In this way, the set of documents becomes fully 
searchable. The end user can search the list of documents contain-
ing a particular keyword. The resulting document list can be 
sorted according to relevance using dictionaries. In some cases, 
it is very useful, but this type of search cannot be extended to 
numerical values. Search queries such as “find documents for wells 
having a total depth greater than 10,000.00 ft” are not possible 
using this approach.

With an MLS able to detect metadata whatever its nature 
(keyword or variable numerical value), this type of search is made 
possible. In other words, machine learning allows the searching 
of documents without prior knowledge of keywords. For this 
reason, the MLS approach is superior to existing established 
full-text indexing.

Conclusions
Our machine learning system, bringing together an essential 

combination of data-management expertise and technology, 
significantly automates the very labor-intensive and therefore 
time-heavy and expensive process of manually cataloging and 
extracting data and metadata from a large number of files and 
scanned documents. After the initial investment in the technology 
and training model, the time taken to extract an initial metadata 
set from a document is reduced from minutes to seconds. Addition-
ally, QC is enriched by enabling the comparison of values across 
related documents. If further metadata values are required, they 
can be extracted without the need to rerun the whole process. 
Early learning models already deliver positive outcomes for 70–80% 
of the overall number of documents relating to wells, as demon-
strated in CDAL’s 2016 Unstructured Data Challenge. This 
success rate is expected to improve as the learning models grow 
in maturity. Automation leads to more automation, and it is quite 
conceivable that an MLS solution will progress from the current 
ability to include more legacy data in routine technical workflows 
to the ability to create new workflows in which the MLS plays 
an active role in recognizing data patterns typical to improving 
E&P performance, such as finding missed pay, for example. 
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