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used 2D porosity map-based approach, showing the improvement 
in matching static and dynamic reservoir properties, mainly for 
pressure and Gas Oil Ratio (GOR) predictions.

Brazilian pre-salt reservoirs
Brazilian pre-salt fields are located in ultra-deep waters (around 
1900 to 2400 m depth) in the Santos basin, southeast Brazil. The 
pre-salt area covers approximately 160,000 km2 and around 20 oil 
fields have already been mapped since its initial discovery in 2006.

Pre-salt reservoirs are predominantly composed of lacustrine 
carbonates, especially microbialite carbonates in the higher reser-
voir zones (Estrella et al., 2008; Doborek, 2012) and carbonates 
with coquinas in the lower reservoir zones. In the lower reservoir 
zone, fractured volcanic rocks with some minor oil-filled porosity 
can also be found (Chang et al., 2008).

In general, pre-salt carbonates are very heterogeneous reser-
voirs, in terms of facies, and consequently, in terms of porosity 
and permeability. Processes such as diagenesis and recrystalli-
zation can modify the primary porosity and make the lithofacies 
heterogeneous. The higher reservoir zone is separated into two 
main groups: high-energy carbonates, composed mainly of stro-
matolites and grainstones, and low-energy carbonates, composed 
of laminites and spherulites.

Low-energy carbonates could present clay content and 
are associated with poor-quality reservoirs or non-reservoir. 
Meanwhile, high-energy carbonates present good porosity and 
permeability and are free of clay particles and are associated with 
good-quality reservoirs.

Feasibility and rock physics studies conducted on the basis of 
available wells (not further detailed in the present work) suggest 
a potentially good separation for reservoir and non-reservoir 
carbonate facies when crossplotting acoustic impedance (Ip) and 
Vp/Vs elastic attributes as shown in Figure 1.

In this context, a reliable seismic reservoir characterization 
study plays an important role in pre-salt reservoir characterization 
by making it possible to discriminate the different carbonate 
lithofacies, and separate reservoir and non-reservoir intervals 
based on the elastic properties derived through elastic inversion 
using seismic data.
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Introduction
Quantitative seismic interpretation plays an important and grow-
ing role for reservoir characterization, as seismic data become 
increasingly reliable as a result of the latest advances in acquisi-
tion and processing techniques.

With these advances, the multi-disciplinary integration between 
geology, geophysics and engineering becomes increasingly effec-
tive at reducing operational risks relating to reservoir exploration 
and production. In addition, a multi-disciplinary approach is 
essential for a better understanding of reservoir features.

In this paper, we present an integrated study that combines 
geophysical and geological approaches to perform porosity 
estimation and populate the reservoir geological model (static 
model). For pre-salt oilfields, owing to the complex porosity 
distribution in carbonate reservoirs, predicting a reliable porosity 
is a fundamental step for reservoir modelling.

After presenting some of the specific challenges associated 
with pre-salt reservoirs, we will describe pre-stack seismic data 
preconditioning. This first step is important to improve the seismic 
data set at the target level in terms of signal-to-noise ratio and reso-
lution before it is used as input to seismic inversion, the second step 
in this workflow. In the seismic inversion process, reservoir elastic 
properties are estimated. From these inverted elastic properties, it is 
possible to perform a Bayesian lithofacies classification and, as the 
final products for this step, litho-probability volumes are generated 
in co-operation with the field’s geologists to be subsequently used 
as input to the geological modelling.

For the third and last step, we used facies probability volumes 
and acoustic impedance to estimate porosity. To use probability 
volumes in porosity model building, we designed a workflow to 
transform probability values into 3D porosity trends: first, a cate-
gorical facies volume is created by applying cut-offs on lithofacies 
probability volumes. For each layer of this model, a mean porosity 
per categorical region (facies), based on porosity logs at wells is 
calculated. Then, a relationship between acoustic impedance and 
mean porosity values was determined to create the final trend 
porosity volume to guide the porosity prediction away from wells.

Finally, we ran flow model simulations to quantify the ben-
efits of the integrated workflow compared to a more commonly 
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depth-migrated input gathers. The application of pre-stack and 
post-stack processes helped to mitigate the effects on seismic 
amplitudes of the salt layer located above the main reservoir.

This sequence involves processes such as noise attenuation 
and an increase in vertical resolution performed in the pre-stack 
and post-stack domains.

In the pre-stack domain, steps such as muting from incident 
angles and f-k filtering were performed. The f-k filtering appli-
cation was effective at attenuating coherent noise present in far 
offsets on common image gathers (CIGs).

Structurally-conformable and inverse-Q filtering were the 
main steps performed in the post-stack domain. The struc-
turally-conformable filtering (Hoeber et al., 2006) attenuates 
coherent noise generated by salt flanks. This kind of noise 
appears as vertical stripes in seismic data, that is easily removed 
by structural filtering owing to dip discrimination between noise 
and the primary signal reflection.

The amplitude absorption effects were compensated by 
applying an inverse-Q filter. The Q volume was defined using 

For this purpose, a specific workflow was adapted to predict 
reliable reservoir properties, minimizing the uncertainties associ-
ated with the seismic data and considering the high heterogeneity 
of pre-salt reservoirs.

Geophysical approach: seismic preconditioning, 
elastic inversion and lithofacies classification
Improving the quality of seismic data prior to starting any 
quantitative analysis is an important task to ensure a successful 
reservoir characterization study. This seismic data conditioning is 
performed prior to elastic inversion and focuses on the reservoir 
interval at reservoir scale and its main features. Also, quality 
control (QC) is performed after the completion of each step 
to monitor data improvements and ensure preservation of the 
Amplitude Versus Offset (AVO) response.
Seismic data preconditioning
In order to improve the signal-to-noise ratio, seismic amplitude 
reliability and vertical resolution in the reservoir interval, we 
designed a specific data preconditioning workflow for the 

Figure 1 Crossplot of Ip vs. Vp/Vs ratio for a pre-salt 
reservoir oilfield.

Figure 2 Gather displays and associated AVO plots 
used for QC during the pre-conditioning. (a) Raw 
gather, (b) gather after pre-stack filtering processes, 
(c) difference between (a) and (b).
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Finally, we applied a time misalignment correction to remove 
residual time shifts that could remain between angle stacks. 
This procedure is important before the inversion process as time 
misalignment between angle stacks implies a wrong estimation of 
the AVO gradient and has a direct impact on the Vp/Vs estimation 
during elastic inversion.

regional surfaces such as water bottom, salt top and salt base. 
The Q factor values estimated using data from vertical seismic 
profiles (VSP) was used to fill the stratigraphic model built 
from the available horizons. By doing so, we created a 3D 
factor Q volume to be used during the amplitude deabsorption 
correction.

Figure 3 Well-tie AVO QC showing (a) AVO modelling from well logs, raw gather and the gather after pre-stack preconditioning, (b) AVO curve from synthetic (blue) and raw 
gather (red), and (c) AVO curve from synthetic (blue) and pre-conditioned gather (red).

Figure 4 Stack section QC display showing (a) 
mid angle stack before noise attenuation, (b) mid 
angle stack section after noise attenuation, and (c) 
Difference between (a) and (b). The average extracted 
seismic wavelet amplitude spectrum is also displayed 
along with its dominant frequency for comparison.
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synthetic gather, generated by AVO modelling from well logs, 
and the raw and pre-stack preconditioned gather. This result 
shows that the AVO gradient was preserved and the AVO curve is 
more stable, without losing frequency content.

In addition to the AVO QC for each preconditioning step, 
QC was performed on sections crossing through key wells. Fig-
ure 4 displays the post-stack filtering results showing mid-angle 
stack sections. After removal of the linear dipping noise, the 

Stringent QC steps must be performed during pre-condition-
ing, in particular, to ensure preservation of the AVO response for 
primary reflection after each step. Using the available well data 
as support, each step and its impact on the AVO response was 
carefully analysed. AVO modelling was performed to compare 
the real and synthetic AVO response.

Figure 2 shows the results from all the pre-stack precondi-
tioning processes and Figure 3 shows a comparison between the 

Figure 5 Stack section inversion Q filtering QC 
showing (a) a mid-angle stack (a) before and (b) after 
inverse Q filtering. The average extracted seismic 
wavelet amplitude spectrum is also displayed along 
with its dominant frequency for comparison.

Figure 6 Inversion well-tie QC showing well log 
(black), initial model (cyan) and inversion result 
(red), (a) before and (b) after preconditioning. Also 
displayed is a histogram of the mis-tie between 
inversion result and well log.
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excellent estimates of Ip and a more stable Vp/Vs Ratio (see  
Figure 6).

Elastic inversion
This section shows elastic inversion results and lithofacies 
classification performed over a pre-salt carbonate field, high-
lighting how these results aggregate information for reservoir 
characterization and geological modelling.

The 3D, multi-cube simultaneous inversion scheme starts 
from an initial layered elastic model defined in the time 
domain (Coulon et al., 2006). During inversion, the initial 
model is perturbed by multiple iterations using a simulated 

lateral continuity is improved. The results from inverse Q 
filtering are presented in Figure 5. From these results, it is 
possible to observe the dominant frequency increase, providing 
an enhancement in seismic resolution.

The final type of QC we performed to monitor the improve-
ment in seismic data quality during pre-conditioning is elastic 
inversion, applied on a small area around key control wells. 
We generated five angle stacks from each preconditioning step, 
with a minimum and maximum angle of incidence of 5º and 
45º, respectively.

The QC at the well shows clearly that the inversion 
results from the preconditioned data are much better, yielding 

Figure 7 Inversion QC at the well showing the 
comparison of inversion results to upscaled well 
logs for Ip, Is and Vp/Vs ratio and the comparison 
of synthetic traces from the inversion to the input 
seismic traces from the four angle stacks.

Figure 8 Workflow for the Bayesian lithofacies classification.
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from the inversion results. The comparison between upscaled 
blocky well log and blocky inversion results demonstrates that 
the inversion provided good estimates of the Vp/Vs ratio with 
a good decoupling between Ip and Is. Despite the definition 
and inclusion of an ultra-far angle stack (~45º), the inverted 
density cube obtained for this carbonate reservoir was difficult 
to stabilize and was not considered as a reliable input for the 
Bayesian lithofacies classification.

Lithofacies classification
Following the inversion process, we apply a Bayesian clas-
sification technique to these results to generate lithological 
probability cubes from seismically derived impedance and from 
lithological classification at the wells. These models are consist-
ent with the seismic information and at the same time reproduce 
a priori information in the form of spatial geostatistical distri-
butions between lithological classes. Using Bayes’s theorem, 
the elastic properties derived from seismic observations, the 
prior information from well logs and the geological knowledge 
are all combined to define a posterior probability distribution 

annealing procedure to find a global solution that optimizes 
simultaneously the match between the five input angle stacks 
and the corresponding synthetics calculated by convolution 
with full Zoeppritz reflectivity equations. In addition to the data 
mismatch term, the objective function contains 3D spatial conti-
nuity constraints that are used to attenuate the effects of random 
noise. The inversion works by perturbing Vp, Vs and density 
in each cell of the 3D stratigraphic grid. During inversion, 
independent perturbations of the different elastic parameters 
can be applied or perturbations can be coupled via correlations 
between Vp-Vs and Vp-density. In addition to updating the 
elastic parameters, the time-thickness of the micro-layers is 
also adjusted during the inversion process in order to maximize 
the coherence between the observed seismic events and the 
inversion layer framework.

Figure 7 shows the inversion results at a well location. The 
black line is the original well log; green, the well log upscaled 
to the stratigraphic grid resolution; and red, the inversion 
results. With respect to the seismic traces, the black trace is 
the input (real) seismic trace; red, the synthetic trace created 

Figure 9 Definition of the lithofacies classes using 
bivariate PDF’s (contoured regions) fitted to the well 
log training data (points).

Figure 10 Inversion QC along a section crossing eight 
wells. (a) Upper section corresponds to Ip attribute  
(b) lower section corresponds to Vp/Vs attribute.
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attributes. The Vp/Vs attribute is stable and this is thanks to the 
rigorous pre-conditioning step applied to the seismic data.

Bayesian lithofacies classification using these inversion 
results provided final probability volumes for each lithofacies and 
these final products are illustrated in Figure 11.

According to the results, we observe the predominance of 
good reservoir facies in the central area, shale content concen-
tration located on the basal portion, particularly associated with 
structural low and in minor occurrence, and some poor reservoir 
facies in the southwest area.

We also see the superporosity reservoir facies is highlighted 
in the NW-SE direction, encompassing the best producer wells 
for this pre-salt field. In this region, the effective porosity could 
reach values of more than 20%.

function for the lithological models. The technique constructs 
multivariate probability density functions (PDF’s) from the 
well logs or upscaled well logs for each litho-class that are to 
be predicted. Well data (facies interpretation and elastic logs) 
are used to build a training set for the classification. Log data 
points in the training set are displayed in a series of 2D cross 
plots of elastic attributes. Next, a multivariate PDF is fitted to 
each cluster of points in the training set using a non-parametric 
modelling technique. The PDFs are then applied to the elastic 
inversion results to calculate litho-probability cubes that can 
be used for risk assessment when planning new well locations. 
Figure 8 shows the workflow of this methodology.

Furthermore, a priori information about lithofacies propor-
tions, for different regions (e.g., according to production zones, 
geological units) inside the reservoir, could be used to control 
the lithofacies distribution over the area of interest taking into 
account the conceptual geological model. Using this information, 
litho-probability cubes and a most probable lithology cube are 
computed based on the a priori facies proportions.

For this study, four lithofacies were defined at well loca-
tions: shale, good reservoir, bad reservoir and super-porosity. 
The Bayesian classification takes as input three attributes: Ip, 
Vp/Vs ratio and depth. We construct 2D crossplots combining 
these attributes at wells and the PDFs were estimated for each 
lithology class as illustrated in Figure 9. The good separation 
between PDFs ensured that we obtained higher-probability 
lithofacies cubes, reducing the uncertainty of the seismic 
lithology prediction.

As mentioned before, accurately estimating elastic properties 
through simultaneous elastic inversion and predicting lithofacies 
distribution by Bayesian classification are the main objectives 
for this geophysical approach to pre-salt carbonate reservoir 
characterization.

As shown in Figure 10, we can observe a good match between 
inversion results and wells logs with Ip (a) and Vp/Vs (b) elastic 

Figure 11 Litho-probability maps corresponding to  
(a) good reservoir, (b) shale, (c) poor reservoir and  
(d) super-porosity reservoir.

Figure 12 3D geobody extracted from the super-porosity probability volume.
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At well locations, well logs are available to predict the 
porosity, such as neutron-porosity or magnetic resonance, 
where effective and free-fluid porosity is predicted. These 
measurements are very reliable at well scale. However, addi-
tional information is needed to model the porosity away from 
the well locations – where the seismic data (and derived acous-
tic impedance) can be used to guide the porosity estimation.

Crossplotting impedance vs effective porosity from well 
logs makes it possible to establish a relationship between these 
properties and apply this relationship to the inverted acoustic 
impedance in order to obtain an effective porosity volume. 
However, applying a porosity volume derived from seismic 
data directly to the geological model is not an easy task: the 
difference between the seismic and geological grid could create 
upscaling issues both in vertical and lateral domains.

The standard approach used in the oil industry is to com-
pute 2D average porosity maps from the main reservoir zones 
to be used as an external guide for porosity estimation.

In this work, our approach goes beyond this convention-
al porosity estimation using only acoustic impedance. Our 
purpose is to use not only impedance, but facies probability 
volumes converted into a lithofacies volume to be used as a 
guide for porosity estimation.

Figure 12 shows a geobody extracted from the super-porosity 
probability volume applying a cut-off of 80% lithofacies proba-
bility.

The 3D geobody shows the lateral and vertical distribution 
of the superporosity facies, crossing some wells. This litho-
facies is characterized by grainstones and stromatolites with 
vugular porosity.

Geological model building: porosity estimation 
using lithofacies volumes
The geological model describes the main lithostratigraphic 
processes and provides valuable information (such as porosity 
and permeability) for reservoir static model building which 
is used as input for reservoir modelling and for each stage of 
reservoir development. The static model is updated as needed 
to refine all subsequent modelling steps.

Porosity is one of the most important properties to be 
predicted from the geological model, because it is strictly 
related to reservoir quality and potential production, and can 
also be related to elastic properties. In general, to fill in the 
porosity values inside the geological model, geologists rely 
on the support of seismic inversion, specifically for acoustic 
impedance estimation.

Figure 13 Extracted horizon through the ‘categorical’ facies volume, defined as the most probable lithofacies.

Figure 14 2D section through the ‘categorical’ porosity volume.
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for each defined facies (super-porosity, shale, good and poor 
reservoir) and for each zone (1 and 2). The facies volume is 
illustrated in Figure 13.

In the second step of the proposed workflow, the average 
effective porosity from nuclear magnetic resonance (NMR) well 
logs are calculated by facies for each layer. As a result of this 
step, the ‘categorical’ porosity volume is a volume with different 
porosity values  (average values) by facies and by layer, as shown 
in Figure 14.

The ‘categorical’ porosity volume only represents litho-
facies with a constant porosity value per layer, which does 
not reflect the expected horizontal variability in porosity 
inside the reservoir. This is updated in the third step of the  
workflow.

A zone-by-zone relationship between mean porosity values 
and acoustic impedance by region and by layer is established. 
The objective of this step is to create a smooth horizontal 
porosity variability per layer controlled by impedance. Thus, 
a final porosity trend volume is created for use as a secondary 
variable in the geostatistical modelling of porosity.

Porosity estimation for static model building
In this paper we propose a new approach, which involves using 
not only the acoustic impedance volume from the inversion but 
also using the previously generated facies probability cubes.

Before describing the methodology, the transfer of prop-
erties between the seismic and geological grid is an important 
discussion point. As we mentioned in the previous section, 
the seismic inversion and lithofacies classification are steps 
performed in the time domain and the static model is built 
in depth. For property transfer, the first step is to convert the 
probability volumes to the depth domain with the same vertical 
resolution as the geological grid. Then, another conversion is 
carried out between the seismic depth domain and the geologi-
cal depth domain using the main reservoir surfaces as reference 
to position all reservoir zones in the same depth location. After 
these steps have been performed, the probability volumes can be 
transferred to the geological grid.

The first step in the proposed workflow is to build a ‘cate-
gorical’ facies volume from the probability facies volumes. This 
consists in establishing cut-off values on the probability cubes 

Figure 16 Porosity trend volume shown on an 
extracted horizon.

Figure 15 The porosity trend volume created using a porosity-Ip relationship to update the ‘categorical’ constant-value porosity model.
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a more representative porosity model for the pre-salt carbonate 
heterogeneity facies.

In order to better quantify the value of the information 
brought by the integrated workflow, both versions of the porosity 
model (suggested workflow and commonly used trend maps) 
were brought to the engineering step and used for flow simula-
tion, and the results are described in the next section.

Validation with flow modeling simulations – engineering 
data
The main function of the flow model is to be able to perform 
reliable predictions of well production to provide reliable revenue 
forecasts and support investment and decisions relating to the 
safety and optimization of oil and gas production.

 In order to perform these tasks satisfactorily, it is essential 
that the simulated production data model be adjusted to the 
existing history data, such as the pressure of the wells (flow 
and static), gas/oil ratio (GOR), water percentage in the total 

Figure 15 illustrates the combination of the categorical 
porosity volume and the acoustic impedance for porosity trend 
volume building.

In the map for a specific layer, it is possible to see the lateral 
variability in the porosity values in the trend volume, as shown 
in Figure 16.

Average porosity maps for a reservoir zone comparing our 
proposed methodology to the standard procedure (using 2D mean 
porosity maps by zone) are illustrated in Figure 17.

For the result using the trend volume, we can observe smooth 
lateral continuity for the porosity model with well delineated 
features and variation along several azimuths. The porosity model 
estimated using the standard approach presents features biased 
along a single dominant azimuth (NW-SE) and unrealistically 
high lateral variability for porosity values.

It is therefore possible to infer that the use of a porosity trend 
volume, rather than trend maps, improves the prediction for 
vertical and horizontal porosity distribution, and this becomes 

Figure 17 Comparison between two porosity maps computed using two methodologies: (a) using trend porosity volume – new methodology (b) using mean porosity maps – 
standard approach.

Figure 18 Comparison between simulations using two different geological models: in green (dotted line), the result using the standard method and in red, the result for the 
proposed methodology using the trend porosity volume.
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use of seismic data is most commonly limited to defining 2D 
porosity trend maps in order to guide interpolations between 
wells, an advanced workflow using 3D cubes from the previous 
steps was designed, resulting in a porosity model consistent with 
geological, geophysical and well data. The improved match with 
the field’s production history data, and GOR in particular, during 
reservoir simulation runs using this approach was the final step 
to validate the methodology and quantify its benefits from a 
reservoir management point of view.
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liquids produced (BSW), among others. For this, in addition to 
the adjustable parameters that are unique to the flow model, such 
as relative permeability curves, thermodynamic and rheological 
fluid properties, it is fundamental that the geological model 
can accurately predict the distribution of reservoir porosity and 
permeability.

For this pre-salt field, in particular, the GOR forecast became 
critical as in the early life of the field, large gas volumes had been 
injected generating an accelerated growth of the GOR in some 
wells and consequently, a possible decline in production.

By comparing GOR predictions from the proposed method-
ology and the standard method using mean porosity maps, we 
could observe an improvement in the history match using the first 
method in terms of its ability to honour the data of pressure and 
GOR for a critical well, as shown in Figure 18.

According to this analysis, in fact, the model built using the 
trend porosity volume presents a better match to the history of the 
field, recovering GOR values closer to real measurements.

Conclusions and discussion
Brazil pre-salt carbonate reservoirs present specific challenges, 
combining in particular a strong heterogeneity in the reservoir 
facies, a complex link between the reservoir properties and 
elastic properties recoverable from seismic data, and a complex 
overburden geology that makes seismic imaging difficult. We 
have illustrated in this case study how combining knowledge 
from the various geoscience disciplines is key to reaching a 
realistic porosity population of the geological model, leading to 
a better prediction of reservoir management parameters. Starting 
with a tailored, reservoir-oriented pre-conditioning sequence, we 
optimized the input seismic data to recover reliable elastic prop-
erties during the seismic inversion. Close collaboration between 
geophysicists and geologists working on this field throughout the 
process was key to defining the facies to be discriminated during 
the Bayesian lithofacies classification and to check consistency 
of results with all previous knowledge of the field (well data, 
stratigraphy studies, etc.). This interaction greatly increased the 
ability of the geoscience team to integrate the seismic-derived 
cubes into the geological model porosity population. While the 




