
512 THE LEADING EDGE July 2019 Special Section: Machine learning applications

Machine learning and geophysical inversion
— A numerical study

Abstract
As geophysicists, we are trained to conceptualize geophysical

problems in detail. However, machine learning algorithms are more
di�cult to understand and are often thought of as simply “black
boxes.” A numerical example is used here to illustrate the di�erence
between geophysical inversion and inversion by machine learning.
In doing so, an attempt is made to demystify machine learning
algorithms and show that, like inverse problems, they have a de�nite
mathematical structure that can be written down and understood.
�e example used is the extraction of the underlying re�ection
coe�cients from a synthetic seismic response that was created by
convolving a re�ection coe�cient dipole with a symmetric wavelet.
Because the dipole is below the seismic tuning frequency, the overlap-
ping wavelets create both an amplitude increase and extra nonphysical
re�ection coe�cients in the synthetic seismic data. �is is a common
problem in real seismic data. In discussing the solution to this
problem, the topics of deconvolution, recursive inversion, linear
regression, and nonlinear regression using a feedforward neural
network are covered. It is shown that if the inputs to the deconvolution
problem are fully understood, this is the optimal way to extract the
true re�ection coe�cients. However, if the geophysics is not fully
understood and large amounts of data are available, machine learning
can provide a viable alternative to geophysical inversion.

Introduction
Several recent studies (Araya-Polo et al., 2018; Kim and Nakata,

2018; Lu et al., 2018; Naeini and Prindle, 2018) apply machine
learning algorithms to geophysical inversion and interpretation
problems. In particular, Kim and Nakata (2018) apply both decon-
volution and a deep neural network to the estimation of seismic
re�ectivity from both a synthetic wedge model and recorded seismic
data. �e key geophysical problem addressed by Kim and Nakata
(2018) is wavelet tuning in a wedge model, described in a classic
paper by Widess (1973). �e authors conclude that machine learning
is able to solve the wavelet-tuning problem more exactly than the
deconvolution method can. In what follows, the wavelet-tuning
problem is isolated and analyzed on a small part of a single seismic
trace, using both deconvolution and a single hidden-layer neural
network. �e results show that, if we have enough knowledge about
the wavelet and the geology, deconvolution is the preferred solution.
However, in the case of less-than-perfect knowledge of the inputs
to deconvolution, machine learning with neural networks can
perform just as well as, or even better than, deconvolution.

The seismic model
�e noise-free normal incidence acoustic convolutional model

is written as

Brian Russell1

s = Gr, (1)

where s is a vector with n seismic trace samples, G is an n by m
dimensional geophysical transform matrix that contains a shifted
seismic wavelet in each of its columns, and r is a vector with m
zero-o�set re�ection coe�cients (Claerbout, 1976). For m + 1
acoustic earth layers, the m re�ection coe�cients are given by

ri = ρi+1Vi+1 − ρiVi

ρi+1Vi+1 + ρiVi
= Ii+1 − Ii
I i+1 + Ii

, (2)

where i = 1,…, m, ρi is the density, Vi is the P-wave velocity, and
Ii is the P-wave impedance of each layer. Equation 2 can be
extended to the elastic nonnormal incidence case using either the
nonlinear Zoeppritz equations or the linearized Aki-Richards
equations, where the re�ection coe�cients vary as a function of
angle of incidence, and three elastic constants — density, P-wave
velocity, and S-wave velocity — are required for each layer.

If we are able to identify the re�ection coe�cients in equation 2,
seismic inversion is straightforward and consists of the recursive
formula given by

Ii+1 = Ii
1+ ri
1− ri

, (3)

where i = 1, 2,…, m.
To illustrate equations 2 and 3, consider the three-layer earth

model shown in Figure 1, which consists of a shale of P-impedance
4500 m/s*g/cc that both overlies and underlies a wet sandstone
of P-impedance 5500 m/s*g/cc (i.e., m + 1 = 3 and there are m = 2
re�ection coe�cients). Application of equation 2 gives

r = +0.1
−0.1

⎡

⎣
⎢

⎤

⎦
⎥ , (4)

which is often called a dipole re�ectivity, as shown in Figure 1.
Using the re�ectivity calculated in equation 4 and the correct

initial guess of 4500 m/s*g/cc, application of the recursive inversion
approach given in equation 3 gives the correct answer of

I =
4500
5500
4500

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (5)

1CGG GeoSoftware, Calgary, Alberta, Canada. E-mail: brian.russell@cgg.com.

https://doi.org/10.1190/tle38070512.1.

July 2019 THE LEADING EDGE 513Special Section: Machine learning applications

To create a synthetic seismic trace model using equation 1,
the key consideration is the thickness of the sandstone layer with
respect to the seismic wavelength. �e thickness can be varied
using the wedge model shown in Figure 2. In this model, the well
log shown in Figure 1 is inserted at trace 25, and the wedge is
thinned from 200 ms at trace 1 to 0 ms at trace 50. A 30 Hz
Ricker wavelet has been used to create each synthetic trace.

In Figure 2, two independent wavelets are visible until the
wavelets start to overlap and form a single 90° phase wavelet. �is
is called wavelet tuning (Widess, 1973). Notice in Figure 2 that
the amplitudes of both the peak and trough increase as the events
start to tune together to the right of common midpoint (CMP) 44.
Also, there is a time “pull-up” due to the fact that the zero crossing
of the 90° wavelet is centered at the pinchout time of 300 ms.
Finally, the wavelets cancel completely at CMP 50.

To illustrate the e�ect of wavelet tuning, a seismic trace is
created by convolving the dipole re�ectivity of equation 4 with a
three-point wavelet given by

g =
−1
2
−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. (6)

To produce full wavelet tuning, the wavelet is shifted by a single
sample, giving

s =Gr =

−1 0
2 −1
−1 2
0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+0.1
−0.1

⎡

⎣
⎢

⎤

⎦
⎥ =

−0.1
+0.3
−0.3
+0.1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (7)

In equation 7, each of the two columns in G represents the discrete
wavelet of equation 6 shifted by one sample, and thus the multi-
plication of G with r is equivalent to the convolution of wavelet
g with r. In this case, the number of seismic samples (n = 4) is the
sum of the length of the wavelet and the one sample shift.
Equation 7 produces the classic tuned seismic response and displays
both an amplitude increase compared with the well-log re�ectivity
and the creation of an apparent 90° wavelet. Inverting the synthetic
response of equation 7 using equation 3, and starting with the
correct impedance, gives

ÎT = 4500 3682 6838 3682 4500⎡
⎣

⎤
⎦ , (8)

where the “hat” over I indicates that this is an estimate of the true
impedance, and the superscript T indicates the transpose of the
vector from column to row format. Notice that two “pseudolayers”
have been added to the true impedance due to the wavelet side
lobes. Also, the increased amplitudes lead to a very large impedance
value in the third layer.

Deconvolution
If we are able to correctly estimate both the exact shape of

the wavelet and the exact spacing of the re�ection coe�cients
(i.e., we know both G and s exactly), we can use the technique of
deconvolution to exactly recover the re�ectivity. If the wavelet
matrix was square, we could solve the problem by a straightforward
matrix inversion as

r = G–1s. (9)

But because the problem is overdetermined (i.e., more equations
than unknowns) we �rst multiply both sides of equation 9 by the
transpose of G, giving

GTs = (GT G)r. (10)

In equation 10, the left-hand side is the crosscorrelation of the
wavelet with the seismic trace (GT s), and the right-hand side is
the autocorrelation of the wavelet matrix (GT G) multiplied by the
re�ectivity. Equation 10 is now a square matrix equation and can
be inverted to give

r ≈(GT G + λI)–1 GTs = G *s, (11)

where G * = (GT G + λI)–1 GT is the generalized inverse of the wavelet
matrix, and a prewhitening factor λI (where I is the 2 × 2 identity
matrix) has been added to avoid instability in the inversion.
Inserting the numerical values from equation 7 into equation 11,
and using a prewhitening factor of zero, gives

r =G*s = −0.3 0.4 0.1 −0.2
−0.2 0.1 0.4 −0.3

⎡

⎣
⎢

⎤

⎦
⎥

−0.1
+0.3
−0.3
+0.1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= +0.1
−0.1

⎡

⎣
⎢

⎤

⎦
⎥ . (12)

In this ideal case, the true re�ectivity is recovered exactly.
When dealing with real data where the data are noisy and we

Figure 1. A three-layer earth model, integrated to seismic time and showing both
the impedances and reflection coefficients from equations 4 and 5.

Figure 2. A wedge model that uses the three layers shown in Figure 1.

514 THE LEADING EDGE July 2019 Special Section: Machine learning applications

know neither the wavelet nor the positions of the re�ectors, the solution is not nearly
as good and results in a band-limited re�ectivity estimate.

Linear regression
In the previous section, we considered the case in which the seismic trace and wavelet

matrix were known. In this section, we assume that the re�ectivity and seismic trace
are both known, and we wish to derive a relationship between the two. �e simplest
solution to this problem is linear regression, where we estimate the two unknown weights
w0 (the intercept or bias) and w1 (the slope) in the equation

r = w0 + w1s. (13)

Similar to the deconvolution problem, linear regression can be written in matrix format
as follows, where the re�ectivity has been padded with zeros to make it the same length
as the seismic trace:

r = Sw =

1 −0.1
1 +0.3
1 −0.3
1 +0.1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w0

w1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

0
+0.1
−0.1
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (14)

In equation 14, the column of ones in the S matrix is there to multiply the bias term
w0. Although equation 14 is almost identical to equation 7, the unknowns are now the
weights rather than the re�ection coe�cients. As in the deconvolution problem, both
sides of equation 14 are �rst multiplied by the transpose of S to create the square matrix
equation given by

STr = (STS) w. (15)

�e inversion of equation 15 to give the least-squares solution of the weights is given as

w = (S TS + λI)–1 STr = S*r, (16)

where S* = (S TS + λI)–1 ST is the generalized inverse of the seismic matrix, and λ is again
a prewhitening factor. Using our model values with a prewhitening factor of zero gives

w = S *r = 0.25 0.25 0.25 0.25
−0.5 1.5 −1.5 0.5

⎡

⎣
⎢

⎤

⎦
⎥

0
+0.1
−0.1
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
w0

w1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0
0.3

⎡

⎣
⎢

⎤

⎦
⎥ . (17)

Equation 17 estimates a bias (w0) of zero since the seismic trace and re�ectivity both
have zero mean. �e second weight is simply a scaling coe�cient that attempts to match
the amplitudes between the seismic and re�ectivity, and can be applied as

r̂ =w1s = 0.3

−0.1
+0.3
−0.3
+0.1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−0.03
+0.09
−0.09
+0.03

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (18)

where the hat over the re�ectivity indicates that this is an estimate of the true re�ectivity.
�e estimate shown in equation 18 is closer to the correct re�ectivity than the unscaled
re�ectivity, but the two true re�ection coe�cients have been slightly underscaled.
Applying the inversion formula of equation 3 gives

ÎT = 4500 4238 5076 4238 4500⎡
⎣

⎤
⎦ . (19)

�e solution shown in equation 19 is closer
to the correct answer than the inversion of
the seismic trace, but it is still incorrect
because of the wavelet side lobes and incor-
rect scaling. Figure 3 is a display of the
inversion of both the seismic re�ectivity and
the scaled seismic re�ectivity compared to
the true impedances.

Another way to visualize the weights in
least-squares regression is to use them to �t
a continuous straight line to re�ection coef-
�cients versus seismic amplitudes. �is is
shown in Figure 4, where the true values
are shown by the black points. �e line in
Figure 4 represents the equation r̂ = 0 + 0.3s
and illustrates the di�erence between this
approach and the previous deconvolution
approach. In deconvolution, we got a perfect
�t to the four points because our assumptions
about the seismic model were correct. In
least-squares regression, the points have
been �t in a “best” least-squares sense, which
is not exact.

Gradient descent methods
In both the deconvolution and regression

methods discussed previously, the full matrix
was inverted. For the size of data sets nor-
mally used in seismic analysis, this is imprac-
tical, and we would normally use iterative
techniques that do not involve calculating
a matrix inverse. �e simplest iterative
technique is called steepest descent (SD), in
which we iteratively arrive at a solution by
starting with an initial guess. �e SD algo-
rithm for regression is written as

w(k + 1) = w(k) + α(k)δ(k), (20)

where k = 0, …, K, w(k + 1) is the vector of weights
at the k + 1st iteration, δ(k) = (ST S)w(k) – STr
is the error found for the kth application of
the algorithm and α(k) is the learning rate.
Note that the term δ(k) is simply the di�er-
ence between the right and left sides of
equation 15 at the kth update of the weights.
To start the SD algorithm, we require an
initial estimate of the weights, which is usu-
ally a random guess.

A more advanced iterative technique is
the conjugate gradient (CG) algorithm
(Shewchuck, 1994; Schleicher, 2018), where
the algorithm takes steps that are orthogo-
nal to the change in gradient, rather than
the gradient itself. A variant of the SD
algorithm is called the least-mean-square
(LMS) algorithm (Widrow and Ho�,
1960), which has applications in heart

July 2019 THE LEADING EDGE 515Special Section: Machine learning applications

monitoring and noise-cancelling headphones. In the LMS
algorithm, the weights are trained one sample at a time, and
thus the method is time adaptive. In neural network applications,
the LMS algorithm is called stochastic gradient descent.

A comparison of the SD, LMS, and CG algorithms applied
to our regression example is shown in Figure 5. �e SD algorithm,
shown as the dotted line, moves from an initial guess of (1, 1) to
the true answer of (0, 0.3) in steps that are orthogonal to each
other. �e CG algorithm, shown as the dashed line, converges
to the correct answer in two steps. (For linear problems, it can be
shown that the CG algorithm always converges in the same
number of steps as the number of unknown weights). As seen in
Figure 5, the �rst step in CG is identical to the �rst step in SD.
�e α term in both SD and CG was optimized using line mini-
mization (Hagan et al., 1996) and varied between 0.05 and 0.2.
Finally, the LMS algorithm, shown by the solid line, required
10,000 iterations to converge to an answer with a much smaller
α term of 0.001, which was held �xed. �e contours shown in
Figure 5 represent the performance surface for this problem,
which is an ellipsoidal surface with the correct weights at the
minimum point on the surface.

The feedforward neural network and nonlinear regression
In Figure 4, it was noted that the straight-line solution given

by linear regression did not give a perfect �t between the true
seismic and re�ectivity values. Neural networks, which are a type
of machine learning algorithm, allow us to extend linear regression

to nonlinear regression. �e neural network used here has two
di�erent names that at �rst seem contradictory: the feedforward
neural network and the backpropagation neural network. �e
term feedforward refers to how the output is computed from the
input if the weights have already been determined. �e term
backpropagation refers to how the training of the weights is
performed, using a technique called error backpropagation.

Figure 6 shows a �ow diagram of a three-layer neural network.
�e �rst layer is called the input layer and consists of the vector
of seismic values (s) and a vector of ones of the same length (1).
Equivalently, we could combine the seismic vector and the ones
vector into the matrix S, as shown in equation 14. �is is called
batch input since we input all the recorded samples at once.
Alternately, we could input the samples one-by-one in real time,
which is called stochastic input. In this study we use batch input.

�e input values are now multiplied by the two sets of weights
and output the two intermediate vectors given by

y1
(1) =w01

(1)1+w11
(1)s (21)

Figure 3. The inversion of the tuned seismic reflectivity on the left and scaled
reflectivity on the right (dashed lines) compared to the inversion of the true
reflectivity (solid line).

Figure 4. Linear regression between the reflectivity and seismic amplitudes using
the least-squares regression coefficients of equation 17.

Figure 5. A comparison of the LMS (solid line), CG (dashed line), and SD (dotted
line) algorithms for solving the linear regression problem, where the contours
represent the performance surface.

Figure 6. A feedforward neural network with a single hidden layer.

516 THE LEADING EDGE July 2019 Special Section: Machine learning applications

and

y2
(1) =w02

(1)1+w12
(1)s , (22)

where 1T = [1 1 1 1], sT = [s1 s2 s3 s4], and the superscript (1)
indicates that this is the input to the �rst hidden layer. �e
term hidden just means that the calculation of the weight values
is done internally by the network and is thus hidden to us. �e
two weights w01

(1) and w02
(1) are referred to as the bias weights,

since they apply a DC bias to the inputs to each neuron. We
can also rewrite equations 21 and 22 as the single equation
given by

Y (1) = SW (1) =

1 −0.1
1 +0.3
1 −0.3
1 +0.1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w01
(1) w02

(1)

w11
(1) w12

(1)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. (23)

�e S matrix in equation 23 is the same as in the linear regression
equation 14, but the weights from equations 21 and 22 are now
arranged in the matrix W (1), which creates the two vectors shown
in equations 21 and 22 as the columns of the matrix Y (1).

�e key di�erence between neural networks and linear regres-
sion is that each neuron applies a linear or nonlinear function to
the weighted sums y1

(1) and y2
(1), as shown in Figure 6. A common

nonlinear function is the logistic function given by

ƒ (y) = 1
1+ exp(− y)

. (24)

�e logistic function is used for two reasons. Its graphical form,
shown in Figure 7, is sigmoidal, or S-shaped, and the function
therefore moves smoothly between limits of 0 and 1.

Also, the logistic function has the very simple derivative
given by

dƒ (y)
dy

= ƒ (y) 1− ƒ (y)() , (25)

which simpli�es the calculations in the backpropagation algorithm.
In the neural network shown in Figure 6, the function f (1)(y) is
the logistic function and the function f (2)(y) is the linear function
y, meaning that its derivative is simply unity.

Applying the logistic function in the neural network �owchart
of Figure 6 then gives two intermediate estimates of the re�ectivity
given by

r̂1
(1) = 1

1+ exp − y1
(1)() (26)

and

r̂2
(1) = 1

1+ exp − y2
(1)() . (27)

Equations 26 and 27 can be expressed in matrix format as

R(1) = F (1) Y (1)() =

1 r̂11(1) r̂12(1)

1 r̂21(1) r̂22(1)

1 r̂31(1) r̂32(1)

1 r̂41(1) r̂42(1)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, (28)

where r̂ij(1) = 1
1+ exp − y ij

(1)() . In equation 28, a column of ones has

been inserted into the matrix R(1) to multiply by the weight bias
in the �nal step.

�e last part of the neural network of Figure 6 is called the
output layer and consists of inputting the weighted sum of the
outputs of neurons 1 and 2 to neuron 3. �e weighted sum can
be written in vector format as

ŷ(2) =w0
(2)1+w1

(2)r̂1
(1) +w2

(2)r̂2
(1) , (29)

where 1T = 1 1 1 1⎡
⎣

⎤
⎦, r̂1

(1)T = r̂11(1) r̂21(1) r̂31(1) r̂41(1)⎡
⎣⎢

⎤
⎦⎥
,

r̂2
(1)T = r̂12(1) r̂22(1) r̂32(1) r̂42(1)⎡

⎣⎢
⎤
⎦⎥ , and w0

(2) is the output bias

weight. �e �nal step is to apply the second function f (2) to the
weighted input, which gives:

r̂(2) = ƒ (2) w0
(2)1+w1

(2)r̂1
(1) +w2

(2)r̂2
(1)() =w0

(2)1+w1
(2)r̂1

(1) +w2
(2)r̂2

(1), (30)

where the �nal estimate of the re�ectivity is equal to ŷ(2) since the
second function is linear. We can write this in vector format as

r̂(2) = ŷ(2) = R(1)w(2) , (31)

where w(2)T = w0
(2) w1

(2) w 2
(2)⎡

⎣⎢
⎤
⎦⎥
.

Figure 7. The logistic function defined by equation 24.

July 2019 THE LEADING EDGE 517Special Section: Machine learning applications

Backpropagation
To �nd the optimum weights for our neural network, a

procedure called error backpropagation (Rummelhart et al., 1986)
is used. �e algorithm is written as follows:

• initialize the weights in both layers to small random values;
• starting with the weights in the output layer, change the

weights to minimize the error between the computed and
desired output values;

• backpropagate the error minimization for all layers;
• iterate until an acceptable error is found.

Referring back to Figure 6, the �nal error is given by the
di�erence between the desired output and the second-layer output,
and is written as

δ (2) = r - r̂(2). (32)

�is error is then used to update the weights so that the error is
minimized in a least-squares sense. �e main concept behind the
error minimization is taken from the chain rule of calculus and
involves di�erentiating the functions in the neural network. For
a detailed derivation of backpropagation, see Hagan et al. (1996).

Backpropagation starts by iteratively updating the weights in
the second layer. For the k + 1st iteration, we have

w(k+1)
(2) = w(k)

(2) +αR(k)
(1)Tδ(k)

(2) , (33)

where k = 0,…, K, δ(k)
(2) is the �nal error as given in equation 32,

R(k)
(1)T is the matrix transpose of the output of the hidden layer as

given in equation 28, and α is the learning rate, which in this case
is �xed. With the exception of the matrix R(k)

(1)T, note the similarity
of equation 33 to the SD equation (equation 20). Since the second-
layer function is linear, its derivative is equal to unity and so does
not appear in equation 30. �e second step is to update the weights
in layer 1 as follows

W(k+1)
(1)T =W(k)

(1)T +αSδ(k)
(1) , (34)

where δ(k)
(1) = R(k)

(1)
!(1−R(k)

(1))⎡⎣ ⎤⎦
T
! w(k+1)

(2) δ(k+1)
(2)T⎡⎣ ⎤⎦. �e symbol ° in the

computation of δ(k)
(1) implies an element-by-element multiplication

of two matrices rather than a standard matrix multiplication. Also,
note that the �rst term in the calculation is the derivative of R(k)

(1)T

as given by equation 25. Due to the extra column of ones that had
been added earlier to multiply with the bias weights, there is a
column of zeros in the second term on the right-hand side of
equation 34 that must be removed. Some authors (e.g., Hagan et al.,
1996) get around this by treating the bias terms separately.

Backpropagation starts with a random guess of the initial
weights at step k = 0. Taking values from a normal distribution
that ranges between –1 and +1, our initial weights are

W(0)
(1) =

w01(0)
(1) w02(0)

(1)

w11(0)
(1) w12(0)

(1)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ = 0.0940 0.4894

−0.4074 −0.6221
⎡

⎣
⎢

⎤

⎦
⎥ (35)

and

w(0)
(2) =

w0(0)
(2)

w1(0)
(2)

w 2(0)
(2)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
0.3736
−0.633
−0.263

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, (36)

where subscript (0) refers to step k = 0. It is important to scale the
input to values close to a standard deviation of 1 with a mean of
0 for the training phase, so our input and desired output values
were scaled up by a factor of 10. Applying the backpropagation
technique with 10,000 iterations and α = 0.2 produced the �nal
weights given by

W(10000)
(1) =

w01(10000)
(1) w02(10000)

(1)

w11(10000)
(1) w12(10000)

(1)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ = −6.2421 6.2331

−2.0701 −2.0789
⎡

⎣
⎢

⎤

⎦
⎥ (37)

and

w(10000)
(2) =

w0(10000)
(2)

w1(10000)
(2)

w 2(10000)
(2)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
1.9948
−2.0308
−1.9948

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. (38)

�e number of iterations and learning rate were chosen by
looking at the least-squares error convergence of the algorithm
and balancing the speed of convergence with any instability in
the error plot. A small learning rate with many iterations is stable
but slow to converge, whereas a large learning rate with fewer
iterations is faster to converge but can be unstable.

�e weights computed as a function of iteration number are
shown in Figures 8a and 8b, where Figure 8a shows the four
�rst-layer weights, and Figure 8b shows the three second-layer
weights. �e least-squares error as a function of iteration number
is shown in Figure 8c, where the error was computed as follows
for the kth iteration:

E(k) = 1
2

(ri − r̂i (k)(2))2
i=1

4

∑ . (39)

Both the weights and the least-squares error show an abrupt
change in their behavior after iteration 2000. �e error in Figure 8c
can be divided into four separate regions. From iteration 1 to
iteration 10, there is a dramatic drop in the error. �en, between
iterations 10 and 2000, the change in the error becomes almost
�at. Between iterations 2000 and 3000, there is another sharp
decrease in the error, although not as dramatic as in the �rst 10
iterations. After iteration 3000, there is a gradual decline in the
error toward zero.

On the error convergence plot, iteration 2000 is the value at
the in�ection point just before the algorithm starts to descend
the second “hill.” Why this is happening is hard to understand
mathematically, but by looking at Figure 8c it appears that the
neural network has “locked” into a local minimum between
iterations 10 and 2000 and then suddenly “ jumped” out of this
local minimum after iteration 2000. A local minimum occurs

518 THE LEADING EDGE July 2019 Special Section: Machine learning applications

when the algorithm converges to what appears to be a stable solution, but the error is still
quite large. We can look at the solution at 2000 iterations by stopping the neural network
at this point in the calculation. �e solution after 2000 iterations is extremely close to the
least-squares solution, as shown by the least-squares error that has been plotted as the black
circle on Figure 8c. �is suggests that the least-squares solution is a very strong local minimum
for the neural network.

�e training of the neural network raised two important questions: how do we know that
we are at a local minimum and not a global minimum, and how do we “escape” from it when
we are trapped in it. �e answer to the �rst question is that the error is usually quite large at
a local minimum. But this is not always the case, and often a local minimum is di�cult to
detect. �e answer to the second question is that it is very di�cult to escape from a local
minimum and that much research has been done in this area. For example, the technique of
simulated annealing is often used to escape from local minima (see Masters, 1995).

At iteration 10,000, the error in Figure 8c has converged almost to zero, suggesting that a
good solution has been derived. �is solution (after scaling down by a factor of 10) is equal to

r̂(2) =

−0.0030
+0.0999
−0.0999
+0.0030

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (40)

�e values given in equation 40 are very close to the correct answer for the re�ectivity, and,
if we let the algorithm run for more iterations, we can arrive as close as we want to the exact
answer. By using the weights in equations 37 and 38, we can con�rm the values in equation 40
using the analytical neural network solution for the re�ectivity as a function of the seismic
data, using the following equation:

r̂i(2) = 1.9948− 2.0308
1+ exp 6.2421+ 2.0701si() −

1.9948
1+ exp −6.2331+ 2.0789si()

⎡

⎣
⎢

⎤

⎦
⎥ / 10 . (41)

Equation 41 shows that the output
of a neural network is simply a
mathematica l transform of the
input seismic values into the output
ref lection coeff icients.

Another way to look at the solution
in equation 41 is to crossplot the pre-
dicted re�ectivity versus input seismic
values for a range of values, as we did
for linear regression. �is is shown in
Figure 9, which should be compared
with the linear regression �t in Figure 4.
�e four known points in Figure 9 now
show an almost perfect �t, but the curve
is nonlinear. For seismic values above
0.3 and below –0.3, the curve starts to
�atten o� instead of staying straight as
in Figure 4.

Figure 10 shows the estimated
re�ectivity after each of the techniques
discussed in the preceding sections.
Figure 10a shows both the true re�ec-
tivity and the result of deconvolution.
If this perfect solution was achieved,
the true impedance could be derived.
Figure 10b shows the seismic response
after wavelet tuning, which gives a very
poor estimate of impedance. Figure 10c
shows the least-squares scaling of
Figure 10b, using our knowledge of the
seismic trace (Figure 10b) and re�ectiv-
ity (Figure 10a). Finally, Figure 10d
shows the neural network estimate of
re�ectivity, where it should be noted
that the �rst and last side lobes can be
made as small as we want by increasing
the number of iterations.

Conclusions
One conclusion to this study is that

applying physics to a problem is better
than applying a neural network because
then the solution has a real physical
meaning and is not just a mathematical
transform. But actual geophysical prob-
lems are not that simple. When the
geophysics is fully understood and
applicable, it is always the better option.
However, our geophysical solution is
usually overly simplistic. (For example,
in the real earth we have to consider
dispersion of the wavelet, inhomogene-
ity, and anisotropy in the earth layers,
etc.) �erefore, a neural network might
�nd nonlinearities in the solution that
we were unaware of in our theory.
Second, our example consisted of very

Figure 8. The convergence of the neural network weights and change in total error, where (a) shows the weights
in the first layer, (b) shows the weights in the second layer, and (c) shows the total backpropagation error, all as a
function of iteration number (the black point shows the error for least-squares regression).

July 2019 THE LEADING EDGE 519Special Section: Machine learning applications

few points. In real geophysical studies, we have large amounts of
data, so a neural network might �nd hidden regularities in the data
that we have overlooked. Furthermore, large amounts of data allow
us to cross-validate our results by leaving parts of the data out of
the initial training and using our trained weights to predict those
parts of the data that were unknown to the neural network algorithm
(Hampson et al., 2001).

�e answer is therefore a judicious combination of both physi-
cal theories and machine learning techniques in our attempts to
understand the earth. Above all, it is important to understand
the theory behind both geophysics-based solutions and machine
learning-based solutions. �at was the key goal of this article.

Acknowledgments
I want to thank my colleagues Dan Hampson and Jon Downton

for our almost daily discussions about machine learning and
Enders Robinson and Sven Treitel for their early papers on decon-
volution, which at the start of my career showed me that the best
way to understand complex theory is to use very clear examples.

Data and materials availability
Data associated with this research are available and can be

obtained by contacting the corresponding author.

Corresponding author: brian.russell@cgg.com

References
Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-

learning tomography: �e Leading Edge, 37, no. 1, 58–66, https://
doi.org/10.1190/tle37010058.1.

Claerbout, J. F., 1976, Fundamentals of geophysical data processing:
McGraw-Hill Inc.

Hagan, M. T., H. B. Demuth, and M. Beale, 1996, Neural network
design: PWS Publishing Company.

Hampson, D., J. S. Schuelke, and J. A. Quirein, 2001, Use of multiat-
tribute transforms to predict log properties from seismic data:
Geophysics, 66, no. 1, 220–231, https://doi.org/10.1190/1.1444899.

Kim, Y., and N. Nakata, 2018, Geophysical inversion versus machine
learning in inverse problems: �e Leading Edge, 37, no. 12,
894–901, https://doi.org/10.1190/tle37120894.1.

Lu, P., M. Morris, S. Brazell, and Y. Xiao, 2018, Using generative
adversarial networks to improve deep-learning fault interpretation:
�e Leading Edge, 37, no. 8, 578–583, https://doi.org/10.1190/
tle37080578.1.

Masters, T., 1995, Advanced algorithms for neural networks: John
Wiley & Sons Inc.

Naeini, E. Z., and K. Prindle, 2018, Machine learning and learning
from machines: �e Leading Edge, 37, 886–891, https://doi.
org/10.1190/tle37120886.1.

Rummelhart, D. E., G. E. Hinton, and R. J. Williams, 1986, Learning
representations by back-propagating errors: Nature, 323, 533–536,
https://doi.org/10.1038/323533a0.

Schleicher, K., 2018, �e conjugate gradient method: �e Leading
Edge, 37, no. 4, 296–298, https://doi.org/10.1190/tle37040296.1.

Shewchuck, J., 1994, An introduction to the conjugate gradient
method without the agonizing pain: School of Computer Science,
Carnegie Mellon University, http://www-2.cs.cmu.edu/~jrs/jrs-
papers.html, accessed 12 June 2019.

Widess, M. B., 1973, How thin is a thin bed?: Geophysics, 38, no. 6,
1176–1180, https://doi.org/10.1190/1.1440403.

Widrow, B., and M. E. Ho�, 1960, Adaptive switching circuits: IRE
WESCON Convention Record, Part 4, 96–104.

Figure 9. A plot of the predicted reflectivity versus seismic amplitude for the
neural network.

Figure 10. A summary of our various approaches to estimating the reflectivity from
the seismic, where (a) shows the correct reflectivity and perfect deconvolution
result, (b) shows the tuned reflectivity on the seismic trace, (c) shows the scaled
reflectivity from least-squares regression (and the local minimum of the neural
network), and (d) shows the neural network result.

