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Facies — The drivers for modern inversions

Abstract
It is common practice to make facies estimations from the 

outcomes of seismic inversions and their derivatives. Bayesian 
analysis methods are a popular approach to this. Facies are 
important indicators of hydrocarbon deposition and geologic 
processes. They are critical to geoscientists and engineers. The 
application of Bayes’ rule maps prior probabilities to posterior 
probabilities when given new evidence from observations. 
Per-facies elastic probability density functions (ePDFs) are 
constructed from elastic-log and rock-physics model crossplots, 
over which inversion results are superimposed. The ePDFs are 
templates for Bayesian analysis. In the context of reservoir 
characterization, the new information comes from seismic inver-
sions. The results are volumes of the probabilities of occurrences 
of each of the facies at all points in 3D space. The concepts of 
Bayesian inference have been applied to the task of building 
low-frequency models for seismic inversions without well-log 
interpolation. Both a constant structurally compliant elastic 
trend approach and a facies-driven method, where models are 
constructed from per-facies trends and initial facies estimates, 
have been tested. The workflows make use of complete 3D prior 
information and measure and account for biases and uncertainties 
in the inversions and prior information. Proper accounting for 
these types of effects ensures that rock-physics models and 
inversion data prepared for reservoir property analysis are con-
sistent. The effectiveness of these workflows has been demon-
strated by using a Gulf of Mexico data set. We have shown how 
facies estimates can be effectively used to build reasonable 
low-frequency models for inversion, which obviate the need for 
well-log interpolation and provide full 3D variability. The results 
are more accurate probability-based net-pay estimates that 
correspond better to geology. We evaluate the workflows by 
using several measures including precision, confidence, and 
probabilistic net pay.

Introduction
In recent years, facies analysis from the outcomes of seismic 

inversions has become an integral part of reservoir characterization. 
Our use of the term “facies” refers to geophysical or geologic layers 
to which petrophysical, geophysical, or geomechanical measure-
ments can be associated. In this context, terms such as “lithofacies” 
or “lithotypes” may be more appropriate. Nevertheless, we prefer 
to use the more popular term “facies” here. Facies are an excellent 
starting point for meaningful conversations between geophysicists 
and geologists and are critical to engineering decisions. They can 
also have reservoir simulation applications in defining the het-
erogeneity of reservoirs between wells. In this context, we can 
write the Bayesian probability as posterior = likelihood × prior/
normalization, or:

John Pendrel1 and Henk Schouten1

p ci |x( ) = p x |ci( ) p ci( ) / p x |ci( )
i=1

N

∑ p ci( )  ,           (1)

where p(x|ci ) is the likelihood ratio, p(ci ) is the prior probability, 
and p(ci |x) is the posterior probability (Hossain et al., 2015).

Mur and Waters (2018) demonstrate an inversion that utilizes 
a Bayesian framework to iteratively construct a facies and imped-
ance model using prior estimates of facies distribution and 
impedance uncertainty. See Kemper and Gunning (2014) and 
Sams et al. (2016) for further examples. Gonzalez et al. (2016) 
use rock-physics models to complete the facies definition set for 
those facies not encountered by wells. They also compute spatially 
variant priors, which are consistent with geology, to determine 
the 3D distribution of Bayesian facies probabilities. Merletti and 
Torres-Verdin (2006) use a simultaneous joint geostatistical inver-
sion for elastic properties and lithotypes to enforce per-facies 
rock-property relationships and image thin bedding in a clastic 
setting. See Saussus and Sams (2012), Hameed et al. (2016), Singh 
et al. (2016), and Tao et al. (2016) for similar applications. 
Initiatives to integrate facies and inversions with machine learning 
are becoming more common (Yenwongfai et al., 2019). Machine 
learning has also been used to generate petrophysical facies curves 
(Hall, 2016; Hall and Hall, 2017; Guarido, 2019; Nishitsuji and 
Exley, 2019). Machine learning is applied to ensure that all dis-
parate information is used most effectively toward a solution. In 
this context, it is not very different from what occurs in the 
Bayesian world, where we ensure that priors represent and contain 
all previously available information. It is this direction that we 
have followed here.

Facies inversion workflows
Bayesian inference. In our investigations of the applications 

of facies to reservoir characterization, we have taken a Bayesian 
approach. Bayes’ rule is uniquely positioned as a reservoir-
characterization tool because of its amalgamation of prior informa-
tion and new measurements. The results are probability based, 
which lead naturally into determinations of risk. Here, we use 
Bayesian inference to determine the probabilities of occurrence 
of geologic facies from seismic reflection data and in particular, 
from AVO inversions (Pendrel et al., 2006). It is observed that 
facies, when displayed in a crossplot space defined by inversion 
outcomes, commonly exhibit a clustering behavior. This clustering 
can be described by assigning joint probability density functions 
(PDFs) to each facies. Applying Bayes’ rule provides the probability 
of occurrence of each of the facies at every location in 3D space. 
Volumes of the most-probable facies follow. The design of the 
PDFs comes initially from well-log data but can be augmented 
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by rock-physics modeling or any other available information. The 
properties in crossplot space can be any derivative of seismic 
inversions. For example, quartz volume and brittleness have been 
used in an unconventional shale play (Varga et al., 2012).

Low-frequency models. When the process is complete and we 
have determined facies from the inversion elastic data everywhere 
in space and time (or depth, in the case of depth inversions), the 
output facies probabilities can be used for a purpose beyond 
mapping the most probable facies. Coupled with per-facies elastic 
trends measured from logs or computed from rock physics, low-
frequency models with full 3D variability can be constructed 
(Pendrel et al., 2016). In its simplest form, the trend value cor-
responding to the most probable facies is chosen and assigned. 
We have used a weigWe have used a weighted approach, where all facies contribute, 
their probabilities of occurrence acting as the weights. This new 
low-frequency model can be used in a second pass of inversion 
and subsequent facies analysis.

Probability threshold. The facies probability volumes are also 
useful in computing reservoir attributes such as net pay. We 
implement a probability threshold, below which data samples do 
not count toward net-pay calculations. We need to be able to 
discriminate between reliable and less-reliable facies estimations, 
where the limited resolving power of the input parameters and 
their measured uncertainties combine to reduce facies probabilities. 
This allows us to bring the required level of confidence to net pay 
and other similar derivatives.

Petrophysical facies. We also applied the Bayesian process to 
the problem of identifying time-domain petrophysical facies from 
wireline logs (Pendrel et al., 2017). These facies can be mapped 
from the petrophysical to elastic domain for use by geophysicists 
and engineers. Prior information can be declared to be uniform 
(all facies probabilities equal) or implemented by log probability 
(proportion) curves representing core observations or any other 
prior facies estimates. The challenge is to preserve some petrophysi-
cal meaning in the elastic facies, which will ultimately be of real 
use to interpreters and modelers. The elastic properties are intended 
to be proxies for petrophysical properties and allow us to estimate 
petrophysical facies from elastic data. We need to ensure, as a 
quality-control step, that this assumption is correct within the 
seismic band. This could require redefinition or regrouping of the 
petrophysical facies or the selection of alternate elastic properties.

Of critical importance is the development of priors for the 
Bayesian estimation of elastic facies. It is common to use the 
uniform or some proportional percentages based on the relative 
occurrences of the facies in well logs. However, this approach 
ignores any geologic ordering of facies, which should be considered 
as a part of prior information (Pendrel et al., 2017). The choice 
of prior probabilities can be critical. It is important to fairly 
represent the state of our present knowledge before the addition 
of further evidence from seismic inversions. We construct initial 
priors with probabilities from the petrophysical facies analysis 
described earlier, averaging over wells and ensuring structural 
compliance. Except for structure, this ignores well-to-well lateral 
variations in facies thickness. However, our purpose will be to 
use this construct as a 3D prior for the probabilities of finding 
the various facies in our subsequent analyses. In this context, it 
is superior to using simple facies proportions or the uniform 

distribution. The results are 3D prior volumes, which are laterally 
constant but structurally compliant. As in the case of the estimation 
of petrophysical facies, prior uncertainties can be implemented 
so that the priors act as guidelines rather than de facto decisions. 
Prior information can also be included in the form of rock-physics 
templates, which are commonly overlain on the PDFs in facies 
design templates. They provide a useful guide when well-log 
information is limited or does not include all of the facies and 
fluid possibilities.

Uncertainties. Although the results of deterministic inversions 
produce single values, there is associated uncertainty in these 
inversions, whether we acknowledge it or not. Inversion uncertain-
ties in the seismic band can arise from a host of possible causes, 
including random and coherent noise and multiple interference, 
wavelet uncertainty, etc. See Thore (2015) for more detailed discus-
sion. Apart from uncertainties, there is always the possibility of 
inversion bias. Biases can be variable from one geologic layer to 
the next and result from our attempts to image very thin layers. 
They can also be caused by attempts to account for lateral vari-
abilities in facies property trends by the interpretation of well logs 
and the extension of the low-frequency model (LFM) band with 
ultra-low-frequency stacking velocity information. The use of 
inaccurate or inappropriate per-facies trends in LFM design can 
also contribute to inversion bias.

A rigorous approach to uncertainty estimation may involve 
estimating the uncertainties in each of the inversion inputs and 
from these, the net uncertainty in the inversion outcomes. Here, 
we take a more phenomenological approach. We estimate 
uncertainties by crossplotting inversion outcomes at well loca-
tions versus high-cut filtered logs (Pendrel et al., 2016). The 
residuals referenced to best-fit regressions are plotted as a 
histogram and modeled with uncertainty probability density 
functions (uPDFs). The uPDFs are quite often Gaussian or log 
Gaussian, but need not be. Since the elastic probability density 
functions (ePDFs) are actual density functions, a probability 
estimate corresponding to a field measurement should not be 
obtained by simply reading a PDF value. Rather, it should 
involve integration under the PDF curve. The uPDFs provide 
the template for doing this. The use of uPDFs has another 
benefit. Certain bias conditions existing in the inversions will 
result in the means of the uPDFs becoming nonzero. However, 
once that information becomes encoded in the uPDFs, bias is 
automatically corrected during the Bayesian process.

Quality control. Quality control of facies estimations can be 
accomplished in several ways. We favor a close-the-loop approach, 
wherein the facies templates applied to inversion data are also 
applied to the corresponding filtered well logs and the results are 
compared. This applies not only to facies estimated from the native 
results of inversions (typically P-impedance, VP /VS, density, etc.), 
but also any derivatives such as shale volume or porosity. We have 
recently found a confidence measure based on the Shannon (1948) 
definition of entropy to be useful (Pendrel and Schouten, 2019). 
It is clear that regions where the probabilities of the two most 
probable facies are almost the same are less reliable than if a single 
facies had been the clear winner. A confidence index (CI) with 
range from zero to unity is derived from negative-scaled entropy. 
The latter is computed from:
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H = − pi
i=1

N

∑ ln pi( )  ,                          (2)

where pi is the probability of the ith facies in the set of N.
The CI is a useful measure to compare facies determined from 

different inversion strategies and is also relevant in measuring the 
consistency of sets of realizations from geostatistical inversion. It 
also comes into play when attempting to understand the number 
of facies, which can be supported by petrophysics and ultimately, 
in the elastic domain, by seismic inversions. Should attempts be 
made to define too many facies, given the wireline logs and band-
limited inversions at hand, the CI will not approach acceptable 
levels (typically approximately 0.8 in the authors’ experiences). 
When inversion uncertainties, modeled or real, are included, their 
effects on the CI can also be determined. The number of available 
wells does not directly affect the CI since it is a function of only 
the probabilities from the Bayesian analysis. There can be an 
indirect connection since the facies priors can be constructed from 
observations at the wells. More wells can lead to greater confidence 
in the priors and the assignment of smaller uncertainties. To date, 
we have implemented uncertainty priors on a geologic layer-by-
layer basis only. Spatial variation is a possibility that we have 
considered in future work.

Gulf of Mexico example
We test the previously stated ideas 

with a Gulf of Mexico data set. The key 
horizon is the top of the Green sand 
shown in Figure 1. Below the Green 
horizon, we recognize upper and lower 
Green sandstones, since the facies sta-
tistics are slightly different. Sharp 
discontinuities in the figure are indica-
tions of faulting. Geologically, there is 
a set of two vertically stacked deltaic 
systems of Middle Pliocene age. They 
average approximately 400 ft in thick-
ness and are separated by approximately 
500 ft. Within the play area are delta 
slope deformation, slump-induced tur-
bidites, and thin mouth-bed deposits, 
without the presence of delta plain 
facies. The principle facies are shale, silt, 
and pay sand.

Three logs in five wells were used 
to define the facies: water saturation 
(Sw), shale volume (Vsh), and density 
porosity minus neutron porosity (ΦND). 
Figure 2 shows the PDF design tem-
plates used to build the facies curves. 
The prior probabilities were taken to be 
the uniform distribution, as no other 
information was available. The resulting 
facies curves are also shown in Figure 2. 
Figure 2 admits the possibility of 

inputting core information as a prior or for calibration. We did 
neither in this work. The output facies probabilities at each well 
location can be used for one further purpose. Coupled with per-
facies elastic trends measured from logs or computed from rock 
physics, they can be used to create a new low-frequency model 

Figure 3. Probability trends derived from the original Bayesian petrophysical facies analysis of the well data. 
Well averages of facies probabilities from the Bayesian analyses in Figure 2 were determined and made to be 
structurally compliant.

Figure 2. PDF template for (a) Bayesian petrophysical facies analysis and (b) output petrophysical facies at 
key wells. The process admits the possibility of uncertainties and priors, although none were used. All five wells 
contributed to the analysis.

Figure 1. Project map showing the Green horizon and five well locations.
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with complete 3D variability, which we constrain to be structurally 
compliant (Figure 3). These will make useful priors when we are 
ready to estimate facies from inversion.

The available seismic consisted of five partial-angle stacks. 
The maximum angle in the farthest stack was 50°. This was not 
judged to be sufficient to resolve density with any degree of cer-
tainty. A single set of wavelets, one for each partial stack, was 

obtained by matching elastic synthetics 
to the seismic at each of the five available 
wells, some of which were deviated. The 
log sets included full-wave sonic logs 
over the reservoir interval, facilitating 
the creation of the AVO wavelets. A 
simultaneous AVO inversion algorithm 
(Debeye and van Riel, 1990; Pendrel 
et al., 2000) was used to create 
the inversions.

Absolute inversions require a real-
istic low-frequency model. This is 
sometimes problematic when the res-
ervoir properties manifest partially in 
the low-frequency band, below that of 
the seismic. This was the case in our 
example. The lower limit of the seismic 
band was estimated to be 12 Hz. In 
these cases, a simple trend will not do 
— the low-frequency model must be 
rich in frequencies up to the lower limit 
of the seismic band to characterize 
thinner pay-bearing layers. We con-
structed such a model by creating 
frequency-rich (in the band below the 
seismic) average elastic property curves 
from all of the wells and making them 
structurally compliant (Figure 4). We 
refer to this as the “constant trend 
workf low.” The inversion results 
obtained after the application of this 
workflow are shown in Figure 5 along 
an arbitrary line passing through all 
the wells and with high-cut filtered 
well logs overlain. The matches are not 

perfect since the inversion has no prior knowledge of the high-
frequency component of the logs and the low-frequency model 
was made from well-log averages. It would have been an easy 
procedure to build the low-frequency model with some sort of 
lateral well-log interpolation scheme to ensure better matches 
at the wells. However, this raises other issues related to the 
validity of any type of interpolation method. We have followed 
the popular custom to avoid this approach here, although it is 
part of our planned future work. The region of interest in Figure 5 
is the Green sand (horizontal arrows), where there is the possibil-
ity of hydrocarbon deposits. The P-impedance agreement with 
the wells is good, and the VP /VS is fair.

The facies design template is shown in Figure 6. The ePDF 
contours represent the first and second standard deviations. 
Indications are that the pay facies will be well separated from 
others and should be well imaged. This is a result of the fact that 
the pay facies exhibit high porosities and are gas charged. Shale 
and silt are less well separated. A rock-physics template designed 
for this reservoir is overlain and leads us to replace the pay facies 
ePDF with the truncated version in the figure since no very low 
VP /VS facies are indicated by the rock-physics template or 
observed. We note that the number of well-log data points 

Figure 4. Constant but structurally compliant elastic property trends constructed from averages over all of the 
wells. These were used as low-frequency model input for the first inversion workflow.

Figure 5. P-impedance and VP/VS from an absolute inversion with high-cut filtered logs at the well locations 
(arrows). Disagreements are caused mainly by the fact that only average trends were used. No well-log 
interpolation was done. The well on the right is in a different pressure regime and shows more disagreement with 
respect to average values. The tie at one well has been expanded to show greater detail within the seismic band. 
The blue curve is the well log, and the red curve is the inversion along the well path.

Figure 6. In this facies PDF design template, facies ePDFs are shown in elastic 
crossplot space along with high-cut filtered well-log data. A rock-physics template 
is also used as a design guide. The ePDF contours represent first and second 
standard deviations.
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representing any particular facies can 
be variable and sometimes quite small. 
While not a real problem for these data, 
it could become an issue in other situ-
ations. The standard deviation of the 
ePDFs should reflect any such lack of 
knowledge resulting from a lack of 
data. Rock-physics models as illus-
trated here can help ameliorate the 
situation. It is also possible that the 
inversion data represent a facies not 
encountered by any of the wells and 
heretofore unknown. We set a limit to 
the facies classifications, typically at 
three standard deviations. Any facies 
outside of this limit for every defined 
ePDF are labeled “unclassif ied.” 
Analysis and mapping of these unclas-
sified facies can often result in a better 
understanding of the geology and the 
addition of new members to the facies 
set. The results of the uncertainty 
analyses of the inverted P-impedance 
and VP /VS ratio are shown in Figure 7. 
The background histograms, to which 
the uncertainty PDF is modeled, are 
residuals from best-fit lines between 
high-cut filtered logs and inversion 
results at the well locations. These 
modeled uPDFs become inputs to the 
Bayesian inference process. Note the 
presence of small biases where the 
mean residual is not zero. These are 
now being accounted and corrected for 
in the Bayesian analysis. We modeled 
the uPDFs approximately with 
Gaussians although any function, 
including a rigorous fit to the histogram 
(binning), could have been used. The 
important thing is to include a reason-
able amount of uncertainty in the 
Bayesian process. We were driven at 
all times to achieve the highest accu-
racy with respect to the known facies 
at the wells, adjusting the input param-
eters to do so. Somewhat counterin-
tuitively, we find that the addition of 
uncertainty sometimes increases accu-
racy at a given probability threshold by 
changing facies assignments or 
decreasing their probabilities of occurrence. Potentially incorrect 
facies assignments are assigned increased uncertainty. The associ-
ated decrease in probability can result in the assignment not 
achieving an acceptable probability threshold for facies to count 
in net pay or similar calculations. Therefore, risking by the 
strategy of probability thresholding in the calculation of net pay 
can remove dubious facies assignments from the analysis.

In Figure 8, we show the most probable facies with the well 
facies overlain. There is generally decent agreement with the 
well facies, and the pay facies are well imaged. There is notable 
disagreement between the well and the inversion at the far left 
well just below the Green horizon, where shale instead of pay is 
indicated (blue arrow). This was determined to be a real effect 
from the inversion and could possibly indicate a multiple problem. 

Figure 7. Gaussian fits to log inversion crossplot residuals are shown for P-impedance and VP/VS. The histograms 
are residuals between high-cut filtered logs and inversions at the well locations. The means and standard 
deviations of these uPDFs are included in the Bayesian inference process.

Figure 8. Facies from the inversion with the constant trend method. The same process was applied to the well-log 
curves, and those resulting facies are shown in overlay. A qualitative assessment shows basically good agreement 
at the well locations. The blue arrow indicates a poor tie, which we believe is multiple related.

Figure 9. The facies in Figure 8 were combined with per-facies trend information derived from the wells to build a 
facies-driven model for use as a low-frequency model in an AVO inversion. This was done by assigning per-facies 
trend values corresponding to the estimated facies and applying the facies-weighting method described in the text. 
This model shows spatial variability not present in the constant model (Figure 4). Although the model created was 
broadband, only the low-frequency portion (less than or equal to 12 Hz) was used in the inversion.
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Deeper in the section, there is perhaps too much silty facies. This 
is an anticipated point of confusion, given the juxtaposition of 
the shale and silty ePDFs (Figure 6). The overall result could be 
improved by upgrading the LFM input to the inversion. This can 
be done by combining the facies from the constant method with 

per-facies trends derived from well logs 
(or rock-physics models) to create new 
broadband property models (facies-
driven workflow). In doing this, we split 
the shale category into three members 
to ensure that the data limits in 
P-impedance VP /VS space are well rep-
resented. At each time in the section, 
per-facies elastic trend values are 
assigned to the output model depending 
on the facies. We used the weighted 
approach discussed earlier to construct 
the output trend from a probability-
weighted sum of the contributions from 
all facies members. These results are 
shown in Figure 9 and are used as low-
frequency (less than or equal to 12 Hz) 
model inputs in another round of 
prestack AVO inversion. Small changes 
in the ePDFs, uPDFs, and prior uncer-
tainties were made to improve precision. 
The 3D priors were the estimated facies 
probabilities from the constant method 
with prior uncertainties included. Prior 
probability uncertainties soften the 
effects of the priors and ensure that the 
result is not predetermined by them. In 
the case of the upper sandstone, they 
were set to 0.30, 0.20, and 0.50 for the 
shale, silty, and pay facies, respectively. 
The final results are significantly affected 
by the prior uncertainty settings, but 
are not overly sensitive to them. Mainly, 

they affect the probabilities of the assigned facies. We set them 
for optimal well matches at a probability threshold of 0.80. The 
second pass of inversion is shown in Figure 10. The resulting facies 
analysis from that inversion is shown in Figure 11. Note the 
reduced amount of pay in the upper part of the reservoir and the 
reduced presence of silty facies deeper.

With respect to the difference between the log and estimated 
facies, there is not much difference between Figures 8 and 11. 
However, a more detailed analysis highlights the differences. We 
used the definition of precision (Liu et al., 2019), which is the 
number of true positive classifications divided by the sum of the 
true positives and the false positives. We considered the precision 
for pay, modifying it with the notion of thresholding. We usually 
are not interested in pay classifications where the probabilities of 
occurrence are not high. Therefore, we eliminate them from the 
precision calculation. We computed a set of precision measures 
at all of the wells for a range of probability thresholds, only 
omitting the suspect area described earlier and highlighted 
in Figure 8. The results for both inversion workflows are shown in 
Figure 12. Clearly, the inversion incorporating the facies-driven 
low-frequency model outperforms the constant trend method 
everywhere and especially at any thresholds of real interest. This 
is because we use facies estimates to create a laterally varying 
low-frequency model, which is an improvement over a single 

Figure 10. Results of an AVO inversion incorporating the low-frequency model constructed from the facies in 
Figure 8 and per-facies trends from logs.

Figure 11. The inversion was rerun using a filtered version of Figure 9 for a low-frequency background model and 
the facies was reestimated. Again, the well-log facies have been overlaid.

Figure 12. This precision analysis compares the facies from the constant (blue) 
and facies-driven (red) inversion workflows. These differed only in their input 
low-frequency model. For each, precision measures were computed in a standard 
way, except only winning probabilities above the threshold were considered. The 
facies-driven model is better overall due, in particular, to its spatial variability 
facilitated by the facies estimates. This is especially true for those thresholds 
that explorationists would consider to be viable. Thresholds of at least 0.80 are 
preferred by the authors.D
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constant model with spatial variability 
arising solely from the requirement for 
structural compliance. Models made 
from some form of well-log interpola-
tion would certainly perform better at 
the wells, but their validity could not 
be guaranteed between them. This has 
been the classic approach but is not 
considered here for these reasons.

We created upper sand net-pay 
maps from both workflows (Figure 13). 
In the upper panels, the probability 
threshold used was 0.8, and the data 
samples were further weighted by prob-
ability. The constant method shows 
greater net pay compared to the facies-
driven workflow. We interpret this to 
be the manifestation of the greater 
number of false positives indicated in 
Figure 12. The lower panels compare 
the facies-driven workflow for thresh-
olds of 0.7 and 0.9. There is naturally 
less pay with the higher threshold, but 
it comes with greater reliability. 
Perhaps, the 0.7 threshold map best 
shows evidence of clinoform develop-
ment in the northeast.

In Figure 14, we compare the CI 
for the constant and facies-driven work-
flows. The CI in the facies-driven 
method is significantly higher overall. 
The constant method demonstrated less 
confidence in discriminating facies. 
However, the pay facies from the con-
stant method were generally well 
imaged, suggesting that it is a viable 
procedure for a first look at the key 
facies. Both methods have issues sepa-
rating some shale and silty facies. This 
was anticipated from the ePDFs in 
Figure 6 and exacerbated by the uPDFs 
in Figure 7.

Conclusions
We have reviewed the strategies for 

estimating facies by using Bayesian 
inference and demonstrated how they 
can be used to build low-frequency models for optimum seismic 
inversions without well-log interpolation. The latter, whether 
simple or employing a more complex function such as kriging, is 
not considered here because its accuracy between wells cannot be 
guaranteed. We seek a better approach. We have used a constant 
structurally compliant elastic trend approach and the idea of a 
second pass of inversion with low-frequency models computed 
from facies from the constant trend inversion facies analysis. 
Neither of these workflows treat the well locations as particularly 
special, aside from the opportunity to measure the accuracy of 

our facies measurements. We reasonably expect the same accuracy 
at interwell locations. We also demonstrated the use of thresholded 
precision measures and an entropy-based CI to assess the consis-
tency of disparate inversion algorithms and workflows.

An important element in this work was the inclusion of 
uncertainties in the Bayesian analysis wherever possible. This 
included accounting for both inversion biases and uncertainties 
and 3D prior uncertainties. Such accounting generally reduces 
the probabilities of the most likely facies but is a more reasonable 
approach when assessing and risking potential drilling locations.

Figure 13. Net pay was computed for the upper green layer from various approaches. The constant trend workflow 
is shown on the left and the facies-driven workflow is on the right for thresholds of 0.8. The larger net pay in the 
constant method is due to the presence of more false positives. The bottom images compare the facies-driven 
method for thresholds of 0.7 and 0.9, where there is less but more reliable net pay. Clinoform development is best 
evident in the lower left image.

Figure 14. Confidence indices are shown for (a) the constant trend and (b) the facies-driven workflows. The 
constant trend method exhibits consistently lower values and correspondingly higher uncertainties in facies 
classifications. The facies-driven method yields estimates with higher probabilities.
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It may be inferred that we discriminate against any low-
frequency models that involve well-log interpolation. This is not 
the case. The optimum interpolation functions are complicated 
and certainly 3D. They constitute an inversion problem unto 
themselves. We continue to investigate these methods as a direction 
for future work. 
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