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Summary 

The western part of the Gulf of Mexico (WGOM) is often 
characterized by large and complex salt and shale bodies, 
making it notoriously challenging to image deep subsalt 
targets, especially with only wide-azimuth towed-streamer 
(WATS) data available. In 2018, BHP acquired a large-scale 
sparse ocean bottom node (OBN) survey in this region as a 
cost-effective way to derive a more accurate velocity 
through full-waveform inversion (FWI) for WATS data 
imaging. The relatively large shot spacing, compounded by 
the complex overburden and the strong reliance on long-
offset data (>40 km) for deeper model updates, poses 
considerable challenges to the processing of this sparse 
nodes survey. We present how we mitigated the noise issue 
accompanying this sparse nodes survey and how we made 
better use of the long-offset data to unlock the full potential 
of this data set, ultimately obtaining both an improved 
velocity model and improved images in this complex area. 
We also demonstrate that using a better low-frequency 
source can increase the S/N of long-offset sparse nodes data 
and further improve the velocity models updated by FWI. 

Introduction 

The western part of the Gulf of Mexico is an area of complex 
geology with large salt and shale bodies that are very 
challenging for seismic imaging. The area of interest in this 
study is located at the corners of East Breaks, Garden Banks, 
Alaminos Canyon, and Keathley Canyon, with water depth 
of ~2 km. It has subsalt targets at a depth of ~12 km, below 
thick salt bodies with extremely undulated bases of salt and 
complex sediment inclusions around the salt bases. Prior to 
2018, two sets of WATS data were acquired and processed 
multiple times with extensive salt scenario work and state-
of-the-art technologies, such as tomography using reverse 
time migration (RTM) 3D angle gathers and FWI, to better 
image and understand the geology in this region. However, 
the subsalt images remain very poor for the following 
reasons: first, the complex salt geometry is not easily 
resolved by manual interpretation; second, earlier FWI 
algorithms did not work on salt; and third, the existing 
WATS data is not sufficient for model building and imaging 
in this area.   
 
With improvements in the algorithm, FWI has become a 
powerful tool for automatic velocity model building in salt 
environments (Shen et al., 2017; Michell et al., 2017; Zhang 
et al., 2018; Wang et al., 2019). OBN has also proved to be 
the best data type for FWI in geologically challenging 
regions given its full azimuth, ultra-long offsets, and good 
low-frequency signal-to-noise ratio (S/N). Driven primarily 

by improved FWI algorithms and available OBN data, we 
have experienced a step-change improvement in subsalt 
imaging in the last few years (Wang et al., 2019; Nolte et al., 
2019). However, OBN has mostly been used for 
development fields within a small survey area rather than 
large-scale exploration, mainly due to its high cost. For that 
reason, Dellinger et al. (2017) propose to acquire sparse 
OBN data for velocity model building with FWI while using 
existing streamer data for imaging for large-scale 
exploration projects, while also demonstrating the feasibility 
of this idea with synthetic data. Through a decimation study 
using the dense Atlantis OBN field data, Mei et al. (2019) 
prove that sparse nodes data can provide an economic yet 
effective solution for automatic model building with FWI in 
areas of complex salt for exploration. Moreover, they also 
reveal that the major challenge of sparse nodes data is the 
reduced S/N of the FWI model due to weaker stacking power 
from the increased spatial sampling. Given the good balance 
between data quality and cost, sparse nodes acquisition is 
becoming a preferred solution for exploration in 
geologically complex regions. Following a survey design 
study through synthetic modeling in the WGOM region 
(Blanch et al., 2019), BHP acquired a sparse nodes survey 
in this extremely challenging area in 2018. 

Sparse OBN data at WGOM 

This sparse OBN survey was mainly intended for automatic 
velocity model building using FWI for exploration purposes. 
Earlier studies found that, for velocity updates with FWI, a 
node spacing of 1 x 1 km is an acceptable range (Mei et al., 
2019) and energies at far offsets that turn back from the 
basement are critical for velocity updates beneath thick salt 
bodies (Blanch et al., 2019). This survey was acquired with 
a node spacing of 1 x 1 km and a relatively large shot spacing 
of 200 x 400 m (two local areas with 100 x 100 m shot 
spacing that we refer to as “imaging shots”). It has a node 
coverage of 2400 km2, acquired in a single patch, and a shot 
coverage of 6800 km2, as a result of a 15 km shot halo. 
Consequently, this survey provides decent ultra-far offset 
(>40 km) coverage for updating the deep subsalt model as 
well as the complex overburden. 
 
Although this sparse OBN survey provides the ultra-far 
offsets required for deep model updates, utilizing the ultra-
far offset energies is not trivial. First, we need to properly 
model the ultra-far offset energies coming back from the 
very deep basement, which requires an appropriate basement 
in the model (Blanch et al., 2019). Second, the main 
challenge of sparse nodes data, namely the noisy update in 
the FWI model due to the reduced stacking power, becomes 
more severe since the S/N of individual traces at these ultra-
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far offsets is poorer as a result of earth attenuation and 
geometrical spreading of the signals. In addition, a nearby 
acquisition introduced strong seismic interference (SI) noise, 
which made the S/N issue even worse. The relatively large 
sparsity, especially on the source side, combined with the 
poor S/N of individual traces at ultra-far offsets and the 
strong SI noise, could introduce significant noise and large 
uncertainties into the derived velocity model. Therefore, 
properly modeling the turning wave energies from the far 
offsets and mitigating the noise issue are the two most 
critical factors for using this sparse nodes data for velocity 
updates. 

Sparse nodes for velocity 

In this area, the diving waves passing through the deep 
subsalt area mostly make their turns at the interface of the 
basement and are recorded at the ultra-far offsets (>40 km) 
(Blanch et al., 2019; Blanch et al., 2020). For this reason, 
having a basement in the velocity model is a necessary step 
to properly model the diving wave energies and use them for 
the FWI update. However, it is challenging to define both 
the basement position and velocity accurately due to a lack 
of constraints. As a result, there are potentially three types of 
errors related to the basement in the input model to FWI: 1.) 
Basement velocity value errors, 2.) Basement velocity 
gradient errors, 3.) Basement position errors.  
 
We performed a set of synthetic studies to understand the 
impact on the inversion results from each of these three types 
of errors. Starting from the legacy velocity model, we built 
a “True” geological model with thick and complex salt 
bodies (Figure 1b). On top of the “True” model, we 
introduced some errors into the salt geometry and sediment 
velocity (Figure 1c) to create a base model for four FWI test 
scenarios: “exact basement” and three types of basement 
errors (Figure1a). Without any basement errors, the “True” 
model could be recovered well thanks to the diving wave 
energy recorded at far offsets (Figure1d). Among these three 

types of basement-related velocity errors, the “True” 
velocity model above the basement could be reasonably 
inverted with incorrect basement velocity value or gradient 
(Figures 1e and 1f), while the inversion failed to give correct 
updates when the basement position was incorrect (Figure 
1g). However, a correct basement position could still be 
inferred from where large perturbations appear in this 
incorrect update. This results from the fact that the basement 
layer has much faster velocities, so its position errors can 
easily introduce large velocity errors to the initial model for 
FWI and cause cycle-skipping issues in FWI updates. Thus, 
this synthetic study demonstrates that a correct basement 
position is the most critical factor for utilizing the far-offset 
diving wave energies for FWI velocity updates.  
 
As the legacy model still had large overburden velocity 
errors in this survey area, the basement was not accurately 
positioned in the initial model for FWI, which caused cycle-
skipping. However, in contrast to the synthetic test, which 
was more of an extreme case with ~1 km of global basement 
positioning errors, the positioning errors in the real case were 
more local and with varying degrees. Therefore, iterative 
FWI and manual interpretation of the basement was carried 
out to gradually improve the basement positioning and 
converge to a better velocity model. 

 
Figure 1: The impact of basement errors on FWI updates at 1.5 Hz: a) velocity profiles showing different types of basement errors introduced into the initial models 
for FWI; b) “True” velocity model; c) velocity errors introduced into the initial model for FWI; d) FWI updates with a perfect basement in the initial model; e)-g) FWI 
updates with basement errors in value, gradient, and position in the initial model, respectively.  

 
Figure 2:  a)/c) velocity model and perturbation derived from TLFWI without 
structural and TV regularization; b)/d) velocity model and perturbation derived 
from TLFWI with structural and TV regularization. 
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Besides the basement position, another major challenge is 
the noisy update in the FWI model due to large shot and node 
spacing, poor S/N of ultra-far offset data, and strong SI 
noise. Although Time-lag FWI (TLFWI) can handle data 
with low S/N better than conventional algorithms (Zhang et 
al., 2018), the TLFWI-updated model from this sparse nodes 
data is still very noisy, especially at deep sections (Figures 
2a and 2c). Moreover, the strong noise in the model makes 
it very difficult for FWI to fully converge to a kinematically 
accurate and geologically plausible model. To mitigate the 
noisy updates in the model, we further improved the TLFWI 
algorithm by introducing structural and total variation (TV) 
regularization into the cost function (Xue el al., 2020). The 
improved TLFWI algorithm resulted in cleaner updates and 
better-defined geological features such as shale bodies. 
Therefore, it helped converge to a better model (Figures 2b 
and 2d).  
 
With the iterative workflow to build a better basement and 
an improved FWI algorithm, we managed to derive a more 
accurate velocity model with improved geological details. 
Contrasted with the legacy model, this updated velocity 
model better delineated the complex geometry of the salt and 
shale bodies, and it led to a WATS RTM image with better-

defined subsalt structures and improved event continuity and 
focusing (Figure 3). 

Sparse nodes for imaging 

Because of its limited offsets (<9 km) and azimuth, the 
existing WATS data lacks illumination and often cannot 
fully image some complex subsalt areas, even with a greatly 
improved velocity model (Figures 4a and 4d). Therefore, we 
went a step further and used the sparse nodes data for 
imaging as well. Thanks to the increased subsalt illumination 
from the ultra-long offsets and full-azimuth coverage of the 
sparse nodes data, the migration image using the fully 
preprocessed sparse nodes data shows improved structure 
and event continuity over the WATS image at various 
locations. However, it is noisier overall and has a lower 
resolution due to the lower stacking power from sparse 
sampling and the larger contribution from large-angle 
reflection energy to the image, still making it difficult to use 
for interpreting the subsalt structures (Figures 4b and 4e).  
 
Recently, FWI Imaging has been shown to produce images 
of higher S/N and improved illumination through the use of 
full-wavefield data and iterative least-squares data fitting 
(Zhang et al., 2020; Huang et al., 2021). By using the full-

 
Figure 4:  Image comparison at the subsalt target level: a)/d) 15 Hz WATS RTM; b)/e) 15 Hz Sparse OBN down-going RTM; c)/f) 11 Hz FWI Image along one 
crossline and one inline, respectively.  

 
Figure 3: 15 Hz WATS RTM stack using legacy and final 8 Hz TLFWI models: a) Crossline view of the legacy velocity and stack, b) Crossline view of the final 8 Hz 
velocity and stack c)/d) Inline view of velocity and stack from legacy model and final model, respectively. 
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wavefield data that includes reflection and transmission 
waves, primaries, and multiples, FWI Imaging of sparse 
nodes data produced a cleaner image and better-defined 
structures than either sparse OBN RTM or WATS RTM 
(Figures 4c and 4f). Thus, it provided a better volume for 
subsalt structure mapping in this area. 

Low-frequency source experiment 

Given that the limited S/N is the primary challenge of sparse 
nodes data, a seismic source emitting stronger low-
frequency signals could be beneficial, at a given acquisition 
sparsity, for velocity model building and imaging by 
improving the S/N of individual traces. This results from the 
fact that FWI relies on the low-frequency signals to correct 
for the low-wavenumber velocity errors, and the low-
wavenumber velocity largely determines the kinematics of 
the wave propagation. At the end of the WGOM sparse 
nodes survey, 9 source lines of Gemini Extended Frequency 
Source (EFS) prototype data at a spacing of 150 x 4000 m 
were acquired for experimental purposes. Figure 5 shows 
that the Gemini EFS prototype generates more low-
frequency energy than a conventional air-gun array. 
 
To confirm the benefits of EFS data, we performed a TLFWI 
test using this EFS data and compared the result to the ones 
obtained from the conventional airgun data at its original 
shot spacing of 200 x 400 m, as well as the decimated one at 
200 x 2000 m which has a similar shot density as EFS. The 
fold ratio of the decimated conventional airgun data, EFS, 
and non-decimated conventional airgun data is 1.5:1:7.5 
(Figures 6a-6c). Compared with FWI updates using the 
decimated conventional airgun data, shallow updates using 
EFS data appear to be quite similar, while deeper updates are 
obviously cleaner from the EFS data even though the EFS 
data has 1/3 less fold (Figures 6d and 6e). With more than 7 
times the number of traces, the non-decimated conventional 
airgun data shows much cleaner top-down updates than the 
EFS data (Figures 6e and 6f). This control test demonstrates 
that, at a similar trace density, EFS can provide a cleaner 
FWI model because EFS can generate stronger signals at low 
frequencies and thus better S/N from near to far offsets. 
However, we still need a reasonable trace density to ensure 
sufficient stacking power for inverting a good velocity 
model, especially in geologically complex regions. 

Conclusions and Discussions 

The WGOM sparse nodes survey provided good 
improvements to the velocity model and images in this study 
area of very complex overburden and deep subsalt targets. 
Nonetheless, some significant challenges were met during 
the processing of this survey. In particular, to make use of 
the ultra-far offset data for FWI updates, a basement with 
correct positioning is needed in the initial model for FWI, as 
demonstrated in the synthetic study. We had to iterate FWI 
and manual interpretation to progressively improve the 
basement and the velocity model to solve this challenging 
problem. Additionally, an improved FWI algorithm with 
structural and TV regularization was helpful for mitigating 
the strong noise issue in this sparse nodes survey and 
allowing the inversion to converge to a better velocity 
model. Finally, FWI Imaging, which models and uses the 
full-wavefield data, further unlocked the potential of this 
sparse nodes data set and provided an improved image for 
subsalt structure mapping that went beyond the initial 
expectations of this sparse nodes survey. However, it is 
worth noting that some true velocity details may not be fully 
inverted with this sparse nodes data or could be lost during 
noise attenuation through regularization, eventually leading 
to some image degradation. This is evident in the results in 
that we generally see better velocity details and images in 
the areas closer to the imaging shots of denser sampling. 
 
To further improve the sparse nodes survey for velocity 
model building and imaging, a better low-frequency seismic 
source and/or denser shot spacing can be used to improve the 
S/N of individual traces and the overall stacking power, 
respectively. On the algorithm side, as the larger-angle 
reflection or transmission energies have stronger elastic 
effects, moving the FWI modeling engine from acoustic to 
elastic could allow us to better use these energies and obtain 
improved results in FWI model updates and FWI Imaging.  
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Figure 5: Data domain comparison: a) conventional airgun data below 4 Hz, 
b) EFS data below 4 Hz. Blue boxes show the zoomed-in areas at ~10 km 
offset with mostly diving wave energies. 

 
Figure 6: Shot map and TLFWI perturbation using different data: a)/d) 
conventional airgun with decimation, b)/e) EFS, c)/f) conventional airgun 
without decimation. 
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