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of images once a model has been trained. However, while 
techniques exist and have been applied to various geological 
image types (Rubo et al., 2019; Falivene et al., 2022; Dietz et 
al., 2023), it is apparent that fully integrated workflows linking 
various model results together for further analytical purposes are 
not as common.

In this article, we discuss how various machine learning and 
artificial intelligence (AI) tasks have been utilised to efficiently 
and consistently achieve the following:
•  Identification and segmentation of target images from a larger 

corpus of documents;
•  QC of the images to identify those suitable for further analysis;
•  Analysis of the images in the quantification of porosity, 

identification of core-scale sedimentary facies (cm scale), 
hydrocarbon shows and thin section microfacies (mm scale);

•  Integration of the image analysis results across various scales 
and cross-data validation.

Large volume analysis of core and thin section 
images in the assessment of Brazil pre-salt  
reservoir distribution
Edward Jarvis1*, Haoyi Wang1, Jonathan Dietz1 and Thomas Van Der Looven1 discuss 
how machine learning and artificial intelligence methods can screen a large corpus of 
unstructured documents, locating and analysing core and thin section images for the 
purposes of porosity quantification, assignment of core and thin section scale sedimentary 
facies and the detection of hydrocarbon shows.

Introduction
Understanding the distribution of reservoir intervals in the sub-
surface requires the integration of various image and numerical 
datasets. These take time to locate and use, particularly over 
large areas and a high number of wells. Core and thin section 
images are common datasets, typically taken over zones of 
potential reservoir significance. These images are, however, 
very qualitative and are therefore under-utilised. Any associated 
data related to these images, such as core description data, for 
example, and the samples themselves are also typically generated 
in a semi-quantitative manner and are therefore slow to generate 
and prone to descriptor bias (Lokier and Al Junaibi, 2016). These 
same image-related datasets are also not a direct indicator of 
reservoir quality, requiring further integration with other datasets 
before conclusions on reservoir distribution can be drawn.

Technology developments in image analysis techniques have 
allowed for the prediction of geological features across thousands 
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Figure 1 Map of the well locations, Campos and 
Santos Basins, Brazil.
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ments in variable formats with a target of locating and utilising 
the following data for reservoir screening purposes:
•  Thin section photomicrographs
•  White light and ultra-violet light (UV) core images
•  X-Ray Diffraction (XRD) mineralogy
•  Core analysis data, such as helium porosity measurements

Data and image identification, extraction and 
quality screening
An immediate challenge in working with any legacy dataset 
is the task of locating and extracting the required data from 

The process of integrating AI results can be a significant task, 
particularly as the various models generate large volumes of 
new data that can be difficult to utilise and time-consuming 
to relate and compare between the models and across scales.  
In the increasingly common scenarios that now involve significant 
automation in data generation and analysis, it is more important 
than ever to integrate across data types and scales to ensure the 
results of automated workflows are accurate as well as accessible.

The dataset used in this approach was from the pre-salt 
stratigraphy of Brazil, with a focus on 228 wells from the Campos 
and Santos Basins (Figure 1). The data comprised 78,018 docu-

Figure 2 Document classification and image segmentation pipeline.

Figure 3 CNN model for the prediction of image classes where each cube represents a stack of ConvNeXt blocks and the rectangle indicates fully connected layers. The 
actual number of ConvNeXt blocks, i.e., n, used in each stage depends on the architecture of the deployed model.
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results from blurred versus non-blurred images may be useful 
should Generative Adversarial Network (GAN) (Goodfel-
low et al., 2014) techniques be applied in the future that 
could generate new, equivalent synthetic images where the 
effects of blurring have been removed. A process of image 
denoising was conducted to sharpen grain/pore boundaries 
acting to either increase or decrease total porosity values for 
a given sample. The process was particularly effective in 
finer-grained samples where boundaries were less well defined 
even where image resolution was high. In this scenario, the 
denoising typically reduced the total porosity by a small  
amount.

Figure 4 illustrates examples of blurred and dark images 
that were identified in the process and their scores according 
to the model results. The image quality screening model 
generally performed well across the image set but some of the 
finer-grained lithologies or those containing greater abundance 
of clay were incorrectly categorised as blurred, indicating that 
further modifications and training were required in certain areas 
of the model to improve performance.

Thin section images
Thin section images contain significant information on reservoir 
quality. An example is visual porosity, for which the abundance, 
size, shape, orientation and distribution of pores can be observed. 
Further characteristics of the imaged rock can also be determined 
at this scale, such as the presence and types of cements, grains 
and clays, all characteristics which infer information on why a 
rock is or is not porous.

Using image segmentation and object classification on the 
14,300 identified thin section photomicrographs, it was possible 
to rapidly predict proportion and properties of grains, clay, 
cement and porosity, a task that would have taken many weeks 
to months to achieve if conducted after manual descriptive 
techniques. This preliminary result would also allow for further 
high-resolution models to be trained on specific stratigraphic 
intervals, reservoir zones and/or geographic areas to produce 
higher-confidence results.

The first task was to identify pore space in the thin sections 
and determine the proportion in each image, using image seg-
mentation. The second task focused on identifying grain type and 
pore space and, as a result, general image classification. Grain 
segmentation in the determination of grain textural properties was 

the source documents. In order to locate the data and images 
of interest, a first phase of document layout analysis and 
classification was conducted using a combination of techniques, 
including computer vision and natural language processing 
(Lun et al., 2022). Specifically, the authors proposed a directed 
acyclic graph (DAG) pipeline for automated classification, 
extraction, and curation of data from various types of docu-
ments, significantly enhancing data processing efficiency and 
accuracy. This approach resulted in the creation of 182,641 
document labels, of which 23,494 were images, and enabled the 
removal of duplicates. Figure 2 illustrates the general workflow 
and pathways for targeted data types.

A final classification step was then run on the identified 
images using a convolutional neural network (CNN) (Liu et al., 
2022) to identify the required thin section and core images from 
the wider previously identified image corpus (Figure 3). From 
the total image dataset, 14,300 thin section images and 1856 core 
images were identified, with the latter covering 1,247.04 m of 
vertical section.

The extracted core and thin section images underwent further 
segmentation to remove background and peripheral content from 
the images, that if not removed would compromise the image 
analysis at later stages. File lineage was maintained, linking 
images to source documents, and any available meta data, such 
as light source, magnification and depth, was also captured and 
attributed per image. This final processing step resulted in refined 
bounding box positions for the 14,300 thin section images and 
the generation of 6964 individual 1m-long core images that were 
then stitched into 70 composite images, one per cored interval. 
Each pixel row was depth-referenced through available meta-data 
acquired per image.

Prior to any image analysis, a series of image QC steps 
were conducted to screen the suitability of each image for 
subsequent analytical steps. This included a further phase of 
image de-duplication based on hashing approaches, image size 
and aspect ratio outlier detection, extent of blur/poor resolution 
based on object boundary sharpness, image brightness and low 
information/degree of variance (Cleanvision model was uti-
lised for this process: https://github.com/cleanlab/cleanvision).  
From this process, 365 images were identified to be of lower 
quality. Those images were labelled such that any results, 
while generated for comparative purposes, could be filtered 
out of the working datasets at a later stage. Comparison of 

Figure 4 Examples of image quality screening. Scores 
are on 0 to 1 scale, with a higher score indicative of 
greater image quality.
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such as plucked grains, slide edges or sample delamination, and 
should therefore be removed from further analysis or could be 
features of interest, such as vugs/ areas of dissolution or natural 
fractures. One hundred and forty nine images were flagged as 
high magnification views and/or total porosity values exceeding 
45%, likely relating to high magnification images focused on 
individual large pores. Values derived from high magnification 
images were flagged, with more representative values taken from 
lower magnification images, if available.

The applied rules were aggregated to provide an overall 
rating for a given image and its data, this rating then being used 
in assessing the image and its data application in various technical 
use cases, such as an input in petrophysical calibration or general 
reservoir quality assessment. All QC rules and associated use case 
terminology and definitions are aligned with the Open Subsurface 
Data Universe (OSDU) and are therefore universally recognised 
as an industry standard.

The characterisation of rock samples goes beyond the 
quantification of porosity, with the assignment of rock facies rep-
resenting a complex task involving the concatenation of details on 
porosity, grain and diagenetic phases. For the focus of predicting 
facies for use in the petrophysical log space, a CNN model was 
trained in the identification of rock properties, including grain 
types, clay matrix, cements and, ultimately, microfacies (Dietz et 
al., 2022). Due to the limited number of samples in the dataset, 
it was necessary to leverage and fine-tune a pre-trained model to 
achieve a better classification accuracy. The thin section scans 
were also divided into smaller image patches to simultaneously 
increase the number of training samples with a classifier append-
ed with the same number of output neurons to the end of the 
model. Subject-matter experts initially identified five main rock 
classes or microfacies for which a training set was generated 
from 725 images. These microfacies classes were assigned over 
the training set:
1. Calcareous matrix with grains
2. Mudstone (Carbonate Dunham definition)
3. Porous limestone
4. Cemented
5. Bivalve floatstone

not conducted although it is an approach that can be conducted, 
particularly on clastic rock.

Pore space in thin section images could be discriminated 
from background regions using colour channels. Since the 
pore space is a relatively consistent blue under plain polarised 
light (PPL) and an inconsistent dark blue/black under crossed 
polarised light (XPL), it was possible firstly to transform RGB 
images into the HSV colour space in which the hue colour chan-
nel controls the visual colour of each pixel. The corresponding 
hue range was then defined that best represented the pore space, 
resulting in a mask for each image, as shown with one image 
example in Figure 5. A filter was set to remove the smallest 
pores, with a threshold set to remove pores smaller than 5% of 
the length of the image. This filter could be adjusted by the user 
and allowed the generation of multiple iterations with different 
set thresholds. The proportion of pore space for the given image 
could then be computed by dividing the number of pixels in 
the pore space region by the number of pixels in the entire  
image.

A further model was run to identify scale bars. Once 
identified, optical character recognition (OCR) was undertaken 
in the extraction of scale-related text, which, in addition to the 
scale bar, could be used to assign a width in microns for a given 
image, thereby enabling all pores in the image to be assigned with 
quantified dimensions.

Post-processing of the segmented pores resulted in statistics 
for pore count, circumference, length, width, shape, long axis 
alignment and areal distribution over the slide. Pore dimensions 
were defined in number of pixels but also microns if a scale bar 
was present in the image.

Finally, the segmented pore dataset was screened in the 
identification of outliers and errors using a series of rule logic. 
Fifty-five rule statements were run over the data resulting in 
the creation of 1.7 million QC records, flagging either errors or 
warnings related to individual pores or image and sample level 
concerns, such as absence of scale bars or no depth datum. The 
QC process resulted in 835 warnings and errors, identifying pores 
with very irregular aspect ratios, very large dimensions or regular 
shapes/straight edges. Such flags could be artificial features, 

Figure 5 Thin section pore space segmentation. 
Original image (A) and segmentation mask (B) 
highlighting individual pores and their long axis 
orientations as denoted by arrows.
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The training relationship between colour and facies was con-
ducted on a subset of wells which generated a corresponding 
core image mask indicating the facies assignment per pixel 
on the photo (Figure 7). A proportion of the wells were 
kept as a test set while the rest were used in training and  
validation. 

The selected model employed Naïve Bayes to predict the 
mask directly and, from that, identify the dominant facies (Webb 
et al., 2010). Naïve Bayes is a probabilistic modelling method 
that can generate the prediction as well as the probability without 
a sophisticated training process and can achieve superior perfor-
mance when there is a strong correlation between the input and 
the output. The Naïve Bayes is formulated as:

where H indicates the facies profile that the method is trying to 
predict, and E is the evidence on which the prediction is based. 
In this case, the evidence corresponds to pixel values. P(H|E) 
is the posterior probability and is a conditional probability, 
which means the probability of H given E. In this case, it is 
the probability of the facies to be assigned to a certain pixel 
value. P(E|H) is called the likelihood, i.e., how different pixel 
values are associated with each facies type. P(H) is the prior 
probability, which is the proportion of each facies type in the 
dataset, and P(E) is called marginal likelihood, which is the 
proportion of each pixel value. Specifically for pixel-level 
facies prediction, the above equation can be reformulated  
as,

where P(pixel) and P(litho) are computed based on core photos 
from a sample well, and P(pixel|litho) is computed based on 
human labelling. The posterior probability is generated for each 
pixel. Facies masks were then generated based on the predic-
tions at each pixel, with further aggregation in order to assign a 
facies to each pixel row and depth increment.

A similar approach was conducted on the UV core images 
to predict intervals with fluorescence and therefore potential 
hydrocarbon shows, with the known caveat that dolomite can 
also fluoresce. By combining the results of the white light and 
UV core image models it was also possible to further subdivide 

A further model was trained in the identification of grain types and 
surrounding rock matrix. These included spherulites, shrubs, silica 
and dolomite cement and carbonate clay matrix, which are general 
terms and definitions associated with the pre-salt stratigraphy and 
aligning with schemes outlined by Wright and Barnett (2015).

The CNN assigned a predicted microfacies class per image 
patch in addition to cement, clays and grain classes. Each 
prediction also included a confidence or F1 score as an indication 
of the performance of the model. Figure 6 outlines the confusion 
matrices for thin section microfacies, grain and matrix prediction 
models. Overall, the model performed well in the identification 
of most classes. The prediction of cement classes performed well 
although differentiation of the type of cement was less clear with 
silica cement frequently being incorrectly predicted as dolomite. 
This related to a paucity of training labels, particularly for 
dolomite cement.

Core images
The 70 stitched white light and UV core photographs were 
analysed with the purpose of identifying features, such as core 
colour, facies and UV fluorescence. Pixel colour analysis was 
then conducted on white light images with assignment to the 
Munsell colour scheme at pixel level. An aggradation step was 
conducted in selecting the dominant pixel colour per pixel row. 
Principal component analysis (PCA) indicated common colour 
clusters relating to different rock properties, such as the presence 
of clay, oil stain or cement, and therefore provided the means of 
classifying coarse rock properties or colour-defined facies classes 
via pixel RGB value.

Rock colouration in the white light images was driven prin-
cipally by the degree of cementation (resultant white colouration 
due to low porosity and high silica and or dolomite content), 
degree of oil stain (pale-orange to dark-brown colouration 
dependent on porosity distribution and/or associated fluid interac-
tion with formation) and volume of matrix (matrix-rich intervals 
typically dark-grey to brown due to discolouration/oxidation of 
carbonates and subtle increase in trace clays and oxides). From 
these criteria, the subject-matter experts defined four discrete 
rock classes, namely:
•  Non-oil stained, grain-dominated
•  Cemented
•  Oil-stained or calcareous matrix
•  Core plugs and gaps

Figure 6 Confusion matrices for thin section 
microfacies and grain and matrix/cement prediction 
models. (1) Calcareous matrix with grains, (2) 
Mudstone, (3) Porous limestone, (4) Cemented and 
(5) Bivalve floatstone.
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is a more precise technique, with means of measuring micro-
pores that are not possible to observe and record in thin section 
images. Such a differential could be used to quantify the areal 
percentage of micropores in the samples. Irrespective of the 
inflated helium porosity values, the overall trends, when plotted 
on depth, were strongly comparable as illustrated in Figure 8 for 
one well. An overall conformance of 0.64 cosine similarity was 
recorded across all wells. After further investigation, samples 
having a significant divergence beyond a threshold greater 
than 20% was typically attributed to thin section image capture 
bias, where results from the images were accurate but were not 
representative of the entire plug sample. Such scenarios also 
provide an indication as to the degree of heterogeneity for a 
given sample.

Further comparison also highlighted a positive relationship 
between predicted cemented, mudstone and calcareous matrix 
facies and lower porosities, highlighting a means of qualifying 
the controls on reservoir quality using the thin section microfacies 
prediction results. Table 1 illustrates the average porosity and 
selected XRD-derived mineral weight percentage values for the 
predicted microfacies classes.

those classes predicted in the white light model. The presence of 
a UV fluorescence flag confirmed an oil-stained class prediction 
over a clay matrix according to the white light model. Figure 7 
illustrates the decision path.

Data integration and QC
The thin section and core image analysis models generated pre-
dicted facies classes over 1247.04 m of core, 14,300 microfacies 
and 85,800 grain and cement type occurrences. In addition, 
over 173,000 individual pores were identified. Six hundred and 
nineteen thin sections were identified as porous and classified as 
having ‘good’ reservoir properties based on a porosity threshold 
of greater than 10%. 907.42 m of potential reservoir facies were 
predicted over the cored intervals of the study wells, of which 
282.27m contained hydrocarbon indicators.

Of the 6070 distinct depths with thin section-derived poros-
ity, 4344 images had a corresponding helium porosity value for 
cross validation. Interrogation indicated that helium porosity 
values were on average 7.9% higher than segmented pore values 
which, in many cases, relates to the difference in measurement 
precision between the two methods. Helium porosity analysis 

Predicted Thin Section Microfacies

1. Calcareous 
matrix with grains

2. Mudstone 3. Porous 
limestone

4. Cemented 5. Bivalve 
Floatstone

Pore segment (av. area %) 2.54 1.6 8.13 2.59 5.42

Helium porosity (av. volume %) 5.46 7.68 12.75 3.71 5.6

Quartz (av. volume %) 13.92 29.25 10.85 29.58 24.67

Dolomite (av. volume %) 21.04 59 64.76 31.89 37.8

Table 1 Average pore segment, helium porosity and XRD mineralogy values for predicted thin section microfacies.

Figure 7 Core image facies and fluorescence prediction.
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typically created during sample preparation and therefore of no 
value.  

When comparing the thin section microfacies prediction 
results against the core image model, there was conformance 
between the reservoir classes at both scales in 46.4% of the total 
instances with conflicts relating typically to localised features 
only visible at the thin section pore scale, such as silica cements. 
Figure 9 illustrates such a scenario where two thin sections exist 
at the same depth with significantly contrasting porosity and 
microfacies predictions. Comparison with the core image model 
results and core analysis data indicates both thin section image 
predictions are accurate, but the lower-porosity image relates to 
a local cement that also highlights a degree of rock heterogeneity 
at the centimetre scale. Observations of this kind are quick to 
ascertain in low sample numbers, but this method of cross-data 
examination provides a means of quickly screening the heteroge-
neity of samples and the ability to assess the impact of features 
observed at the finest scale and their relation to larger-scale 
reservoir properties.

A final comparison across all the model outputs illustrated 
a positive correlation between higher UV core fluorescence and 
typically higher helium porosity values and close correlation 
with the porous, grain-dominated and oil-stained rock classes 
as predicted from white light core images and thin sections 
(Figure 10). Areas of non-conformance seemed to relate to 
fluorescence occurring over lower-porosity, microporous zones.

Conclusions
This article discusses how the use of AI technologies looked to 
address the challenge of assessing reservoir quality and its dis-
tribution in the subsurface, where the data available for analysis 
exists in large volumes and unstructured formats. Starting with 
a corpus of 78,018 unstructured documents from 228 wells, the 
use of a series of interlinked AI technologies arranged within a 
pipeline led to identification of the required sub-set of data and 

The results of the cross examination between data sets 
illustrate trends that would be expected, helping to validate the 
results of the model. But what is also evident is the demonstrat-
ed means of using the predicted microfacies to explain trends 
in reservoir properties. For all available depth points with thin 
section imagery, it would be possible to ascertain both the 
reservoir quality and also the controls on pore volume statistics. 
While it is possible to derive similar results and observations 
using manual methods, it is the speed with which the data 
demonstrated here was generated, from such a wide array of 
disparate datasets, that highlights the potential significance for 
subsurface workflows.

The results of QC rule screening and cross-data validation 
highlighted that a proportion of the segmented pore space data 
(79.7%) was suitable, according to Open Subsurface Data 
Universe (OSDU) technical assurance terminology, for general 
reservoir screening purposes. Suitability was defined where 
individual pore dimensions and sample scale total porosity 
values were within acceptable ranges, although sample datum 
parameters may be absent. 51.6% of the generated data was 
deemed appropriate for the purpose of formation evaluation 
calibration where a greater degree of data confidence and 
precision is required. In this instance, there was a requirement 
for porosity values between the methods to conform within a 
15% differential margin, for clear recorded depth datums to be 
present, and for pore size attributes and facies predictions to 
align across both thin section and core images - 20.3% of the 
image dataset was deemed unsuitable for any further analysis 
due to one or a combination of factors. Many images failed the 
image quality pre-processing screening steps, typically being 
too dark or blurred. Many images were taken at too high a 
magnification and so were not representative of the samples in 
general. Porosity extraction and screening indicated some imag-
es only contained artificial, oversized or extensively elongated 
pores through grain plucking or sample delamination, features 

Figure 8 Correlation between thin section, core analysis and thin section microfacies predictions.
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iterate over all the pixels in the input images, therefore taking 
dozens of hours to predict the facies for one well. To improve 
this, deep learning-based image-level models could be devel-
oped to reduce the processing time per image from hours to  
minutes.

The various QC steps and cross-validation flagged errors in 
the model outputs that could be isolated and also identified geo-
logical explanations for variance in reservoir properties. How-
ever, it is still apparent that errors and false positives remain to 
be addressed after later iterations and models. Identifying rock 
properties in core from colour alone is not sufficient to differen-
tiate between many rock classes, which means that further work 
is needed to improve the core facies prediction model through 
the use of a CNN model and labels. This alongside the results 

then the generation of new quantitative porosity values and the 
prediction of microfacies from 14,300 thin section images. A 
separate process within the same pipeline led to the prediction 
of geological rock properties and oil show detection from 1856 
core photos.

Manual identification, extraction, analysis and integration 
of these same datasets would be considered a year-long 
exercise, mobilising various subject-matter experts. In the 
method outlined in this paper, it was possible to generate 
porosity values and predict microfacies for the 14,300 thin 
section images in five days of processing time, equivalent to 
30 seconds per image, utilising one CPU and one GPU for 
inference, once the training model was in place. The processing 
time for core images was slower, since Naïve Bayes needed to 

Figure 10 Comparison across models illustrating distribution of UV fluorescence in relation to porosity values and both predicted microfacies and core image facies.

Figure 9 Correlation between thin section and core image model prediction results. A scenario where two thin section images exist at the same depth and have conflicting 
segmented porosity values reflecting sample heterogeneity. Comparison with the helium porosity measurement indicates which of the images is the most representative.
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of the current model would help in the identification of textural 
characteristics in the images. The thin section microfacies 
model performed well where sufficient labels existed within the 
training set, and application of the model outside of the Brazil 
pre-salt stratigraphy indicates a more universal application is 
possible, with classes such as ‘Mudstone’ and ‘Cemented’ being 
identified with high accuracy when the model is applied across 
global carbonate image libraries.

A full screening of the reservoirs discussed in this article 
would consider additional data types, whether used in traditional 
workflows or in the methods discussed here. Future work will 
look to use the model outputs to infill depth sections of the 
subsurface where core analysis is absent and integrate downhole 
test data, such as Drill Stem Tests (DSTs) and wireline tool tests, 
to further validate the results. All results will be used and tested as 
additional input calibration points to image log and petrophysical 
interpretation models.

In summary, the merits of the approach outlined in this 
article aim to demonstrate that such methods are a means of 
both efficiently extracting data from documents and generating 
large amounts of new geological data in timeframes that 
would not be possible using manual methods. As the results 
indicate, the models will never predict results with 100% 
accuracy. However, the models enable large volumes of data 
to be screened quickly, with QC flags and certainty scores in 
place to guide subject-matter experts to those wells of interest or 
needing further attention and targeted manual assessment. The 
approach outlined is intended to be a method utilised alongside 
manual methods to help tackle large datasets, enabling initial 
higher-level screening across the entirety of regional datasets 
prior to the implementation of manual techniques in specific 
areas once a greater regional understanding of data coverage 
and trends is available.
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