Delayed-shot 3D Prestack Depth Migration

Yu Zhang, James Sun, Carl Notfors, Sam Gray, Leon Chernis and Jerry Young, Veritas DGC Inc.

Summary
We present a formulation for delayed-shot migration of marine data in 2-D (plane-wave sources) and in 3D (linear sources and planar sources). We present speedup factors for these delayed-shot migrations over common-shot migration, and we discuss some sampling theory issues associated with the formation of delayed-shot records. On both synthetic and real data examples, delayed-shot migration has produced images comparable to those from common-shot migration.

Introduction
The increasing demands of imaging complex geologic structures, for example beneath salt bodies, has led the industry to explore wave equation based prestack depth migration methods that do not suffer from the high frequency and multipathing limitations of Kirchhoff migration. However, common-shot migrations based on wavefield extrapolation are typically more computationally intensive, especially when 3D migrated common image gathers (CIG’s) are output. This relative inefficiency has spurred researchers to seek various ways to speed up their wave-equation migration programs.

The computational cost of common-shot migration is roughly the cost of migrating a single shot record multiplied by the number of migrated shots. Reducing the number of shots, and consequently the number of migrations, is an obvious way to improve the total migration efficiency, although it is not obvious that simply decimating shots will allow one to maintain the fidelity of the migrated image. A different approach to reducing the number of shots without decimation is based on the linearity of the wave equation: a linear stacking of wavefields initiated at different shotpoints satisfies the same wave equation as each of the individual wavefields. Therefore, migration can be applied to the superposition of different shot records, allowing the total number of migrations to be reduced. This idea has led to the migration of phase-encoded shot records (Romero et al., 2000), in which a subset of all the shot records are linearly combined together by applying some phase functions chosen to reduce the cross-term artifacts. A specialization of this idea, called delayed-shot migration, has also appeared (Whitmore, 1995; Rietveld, 1995; Duquet et al., 2001; Liu, 2002). In this method, a linear time delay, based on the distance from the shotpoints from some reference location, is used to combine different shot records. The surface data are transformed from the response to point sources to the response to linear or planar sources.

In this paper, we review our formulation of delayed-shot migration for 3D prestack imaging of marine data, discuss its realistic cost impact and illustrate its applicability with a synthetic data example.

Delayed-shot migration versus common-shot migration
Common-shot migration is performed on individual common-shot records, and the individually migrated records are typically stacked to form the final image of the Earth’s subsurface. Each migration is performed by using the wave equation to downward continue both the wavefield recorded at the receiver locations and the wavefield initiated at the shotpoint, and combining these downward-continued wavefields with an imaging condition. Since the shotpoint is localized in space, it acts (in 3D) as a point source, emitting waves that are spherical, at least near the shotpoint. Although a localized source distribution near the Earth’s surface can be considered as a point source, numerical simulation of 2-D wave behavior using finite difference methods typically contains the tacit assumption that the source is a line source in 3D, with no spreading in the out-of-plane direction. Then it is possible to perform a decomposition of the recorded data into plane-wave components by using some variant of slant stack processing. This involves applying a linear time delay to each shot record (Figure 1). Specifically, each receiver gather is transformed into plane waves as:

\[
 u(x, p, z = 0; \omega) = \int U(x, x_s, z = 0; \omega) e^{i \omega p \Delta x_s} \, dx_s,
\]

and its corresponding plane wave source is

\[
 d(x, p, z = 0; \omega) = e^{i \omega p \Delta x_s}.
\]

If this is performed in the frequency domain, the slant stack can be viewed as a Fourier transform, with \(\omega p \) replacing the spatial frequency. Viewed as a discrete Fourier transform, the slant stack should obey sampling rules that apply to the Fourier transform. These rules determine both the number \(N_p \) of plane-wave components and their spacing \(\Delta p \). In particular, \(N_p \) should approximate \(N_{ss} \), the number of traces in a common-receiver record, for unambiguous representation of the final image.

Our motivation for performing delayed-shot migration is to improve the efficiency of wave-equation migration. To this end, we compare the costs of 2-D plane-wave migration and 2-D common-shot migration. Given \(N_{ss} \) shot records in a sail line with shot and receiver spacings \(\Delta x_p \) and \(\Delta x_r \), respectively, and the length \(L_{up} \) of the full migration
Delayed-shot 3D prestack depth migration

The computational cost C_{ap} of common-shot migration is proportional to the number of x-grid points within the aperture $L_{ap}/\Delta x$, multiplied by N_{as}, i.e.,

$$C_{ap} = KN_{as}L_{ap}/\Delta x,$$

where K is a unit computation constant, representing the average number of arithmetic operations on each migration grid point times the number of migration depths. For plane-wave migration, we have N_p records; all have the entire line for the migration aperture, with size $N_{as}\Delta x/\Delta x_s$. Since the number of operations per grid point is the same as for common-shot migration, constant K has the same value as for common-shot migration, and the computational cost C_{pw} of plane-wave migration is

$$C_{pw} = KN_pN_{as}\Delta x_s/\Delta x,$$

The ratio of Eqs. (1) and (2) gives the speedup of plane-wave migration over common-shot migration:

$$R_{2D} = C_{ap}/C_{pw} = L_{ap}/N_p\Delta x_s.$$

For marine data processing, typical values are $L_{ap} = 15km, N_p = 100$ and $\Delta x_s = 75m$ (Figure 2). Then Eq. (3) gives a speedup ratio of 2, indicating that 2-D plane-wave migration will be roughly twice as fast as 2-D common-shot migration. Counterintuitively, this speedup ratio does not explicitly depend on the number of shots.

3-D provides more degrees of freedom for the slant stack, and allows more possibilities for delayed-shot migration, than does 2-D. For example, we might choose to apply a linear delay to each shot record, exactly as in 2-D. Although the slant-stack (τ_p) processing for this case is similar to the 2-D processing, the result is a set of N_{as} records that are the responses not to plane-wave excitation, but rather to linear excitation along a sail line. In the subsurface, this source wavefield takes the shape of a cone, distorted by the velocity variations (Whitmore, 1995). Alternatively, we can apply a full plane-wave (τ_p, p_0) decomposition, obtaining N_pN_{as} records that are the responses to plane waves that tilt with respect to both the x- and y-axes. In the former case (linear source), the speedup of delayed-shot migration over common-shot migration is exactly the same as Eq. (3), namely

$$R_{3D,linear} = L_{ap}/N_p\Delta x_s,$$

where L_{ap} is the size of the aperture of common-shot migration in the x-direction, i.e., the sail line direction. In the latter case (plane-wave source), the speedup factor needs to be modified to account for the speedup, if any, in the y-direction. This speedup factor is

$$R_{3D,planar} = \frac{L_{ap}}{N_p\Delta x_s\Delta y},$$

where L_{ap}, N_p, and Δy correspond to quantities L_{apx}, N_{apx} and Δx_s in the y-direction. For 3-D marine data, the distance Δy between adjacent shot lines is usually considerably larger than Δx_s, the shot spacing along one sail line. Typical values are $\Delta x_s = 75m$ and $\Delta y = 160m$.

Using these values, and setting $L_{apx} = L_{apy} = 15km$ and $N_{apx} = N_{apy} = 100$, we find the speedup ratio for 3-D line-source migration is 2 (as in 2-D), while the speedup ratio for 3-D plane-source migration is 1.875.

It is possible to improve these speedup ratios, giving line-source and planar-source migration almost arbitrarily high speedups over common-shot migration, in both 2-D and 3-D, simply by reducing N_{apx} and/or N_{apy}. As mentioned above, however, we must be prepared to pay a certain price for doing this, either by reducing the largest p-value (losing steep dips) or, more insidiously, by allowing Fourier transform artifacts to be introduced into the image by increasing the spacing Δp. A certain amount of Fourier transform-related noise might not degrade the final stack, but it is difficult to estimate in advance how much of this noise can be tolerated in any of the individual migrated records.

Likewise, it is possible to speed up the process of common-shot migration, simply by reducing the number of records to be migrated. If we do this by decimating shots, we must be prepared to provide an image whose near-surface is at least somewhat degraded.

As in common-shot migration (Zhang, et al., 2002, 2003), some true amplitude conditions need to be applied during the delayed-shot migration to ensure that the amplitude on the stacked migration section is some true amplitude conditions need to be applied during the delayed-shot migration to ensure. If we do this by decimating shots, we must be prepared to provide an image whose near-surface is at least somewhat degraded. As in common-shot migration (Zhang, et al., 2002, 2003), some true amplitude conditions need to be applied during the delayed-shot migration to ensure that the amplitude on the stacked migration section is some true amplitude conditions need to be applied during the delayed-shot migration to ensure. If we do this by decimating shots, we must be prepared to provide an image whose near-surface is at least somewhat degraded.
Delayed-shot 3D prestack depth migration

side. Similar to the type 2 common-shot formulation derived in Plessix and Mulder (2002), in delayed-shot migration we choose

\[W(\tilde{x}) = \sum_p \left(\sum_\omega |G(\tilde{x}, p; \omega)|^2 \right)^2 \tag{7} \]

where \(G(\tilde{x}, p; \omega) \) is the Green function corresponding to a single linear source or a plane-wave source.

Examples

Figure 3 compares an image from delayed-shot migration with one from common-shot migration. The receiver station interval is 75 ft and the shot interval is 150 ft. The cable length is 26025 ft. The image in Fig. 3b is a stack of images from 121 \(p \)-values with surface incidence angle ranging from \(-52^\circ\) to \(34^\circ\). The image is slightly noisier than the one from common-shot migration, but all structures are well imaged by both migrations. We have also migrated this data set using 241 \(p \)-values, with a result essentially identical to the common-shot migrated image. As sampling theory predicts, the noise level in the image progressively increases as we use fewer \(p \)-values. To obtain a more amplitude balanced image, we calculate illumination map (Fig. 4a) according to formulation (7) and apply it to the stacked section, the result is shown in Fig. 4b. Figure 5 shows angle-domain common image gathers (ADCIG’s) from common-shot migration and delayed-shot migration, respectively. These angle gathers can be used for updating the velocity field or for AVO/AVA analysis. Unlike common-shot migration, whose ADCIG’s are indexed by subsurface incidence angle, the angle from delayed-shot migration is the surface incidence angle. Producing angle gathers from delayed-shot migration is far more cost-effective than from common-shot migration since it requires no additional computation or network communication. We see this as a very important advantage of delayed-shot migration.

Conclusions

We have reviewed the methodology for performing delayed-shot migration in 2-D based on slant-stacking common receiver gathers along the sail line direction. We compared two alternatives for extending this to 3D, namely by forming linear slant-stack sources as in 2-D or applying a full plane-wave decomposition in both \(x \)- and \(y \)-directions. Delayed-shot migration of the Sigsbee2A synthetic data set, with carefully chosen slant-stack parameters, has produced an image comparable to a common-shot migrated image.

References

Delayed-shot 3D prestack depth migration

Figure 3a. Common-shot migration.

Figure 3b. Delayed-shot migration with 121 p’s.

Figure 4a. Illumination map of delayed-shot migration.

Figure 3b. Delayed-shot migration (121 p’s) with illumination compensation.

Figure 4a. Common-image-gathers indexed by subsurface opening angle from common-shot migration. The angle range is from 0° to 60°.

Figure 4b. Common-image-gathers indexed by surface incidence angle from delayed-shot migration. The angle range is from –52° to 34°.