Structurally conformable velocity models with high definition tomography
Saverio Sioni, Patrice Guillaume, Gilles Lambaré, Jean-Philippe Montel*, Anthony Prescott, Xiaoming Zhang, and Gregory Culianez (CGGVeritas)

Summary
Velocity model building remains a crucial step in seismic depth imaging. A general drawback of conventional tomographic approaches is that the estimated velocity models do not conform enough to the structures. We present several applications of an innovative high resolution tomography that inverts densely picked dip and residual move-out data to reveal detailed structurally conformable velocities. The application to the synthetic 2D Marmousi II dataset offers the possibility to carefully assess the method. It demonstrates its ability to produce structurally conformable velocity models with a level of detail that promotes velocity attributes as an aid to geological interpretation. As such it can offer an alternative to full waveform inversion for the interpretation of reflected waves. Finally we show an application to a marine dataset where obtained higher resolution velocity model results in improved focusing of migrated images and improved match to well velocities.

Introduction
Successive step changes in tomography-based migration velocity analysis have resulted in much improved seismic imaging. The progress in terms of data density and quality has been critical as well as the progress in terms of model space and tomographic inversion.

Despite these advances, velocity models updated with such approaches remain smooth and poorly conform to structure (Figure 1 right); this appears as a serious drawback considering velocity structures revealed by full waveform inversion (Plessix et al., 2010). This statement could be mitigated when looking at the RMO field picked by a dense automated picking (Figure 1 middle), which exhibits nice detailed features corresponding to geological structures. For example the rapid changes in RMO in the gently dipping thin beds and in the structured area do not translate into detailed velocities after conventional tomography. Can we do better?

Guillaume et al. (2011) recently proposed an innovative high definition (HD) tomography that can estimate detailed structurally conformable velocity models. In the present paper we present two applications of the approach. The capability of the method to reveal detailed spatial variations of velocity and to improve seismic imaging is first illustrated using the Marmousi II synthetic example. We then apply the high definition tomography to a marine dataset.

High definition tomography
High definition tomography is applied starting from an accurate velocity model obtained by conventional tomography. We can have a multi-layer velocity model representation in which layer boundaries

Figure 1: Limits of conventional tomography. Detailed RMO map (middle) picked on PreSDM results (left) do not translate into detailed velocities (right). The RMO map represents the second order polynomial coefficient of the RMO curve.
describing strong velocity contrasts can be introduced. Inside the layers the size of the velocity grid mesh is chosen according to the density of data and to the expected spatial wavelengths of velocity variations.

High definition tomography inverts densely picked RMO and dip data. RMO picking is performed in a continuous manner gathering huge amounts of detailed RMO information along common image gathers (CIG). A multi-dimensional tracking approach is more accurate when the signal to noise ratio is sufficiently high, while curve/surface picking methods can be preferred when signal to noise ratio is low.

Because tomography from surface seismic experiments tries to solve a quite ill-posed inversion problem in some kind of least squares sense, it is important to make it as well-conditioned as possible and to reject outliers in RMO picks as much as possible. The high definition tomography proposed by Guillaumé et al. (2011) accurately translates the validated small spatial variations of RMO (as shown in figure 1) into localized perturbations of velocity.

Synthetic Marmousi II dataset

We consider an acoustic version of the well known Marmousi II synthetic model (Martin et al., 2006) with a water column of 460m. This model is interesting because it exhibits velocity discontinuities that we can expect to recover with our high definition tomography. Seismic data are computed by an acoustic wave equation finite differences scheme for a marine type acquisition with a maximum offset of 3 km.

We perform a first iteration of conventional tomography that produces a relatively smooth velocity model (Figure 2 left). In a second iteration, PreSDM is run with this updated velocity model. RMO is picked on high density CIGs and inverted by high definition tomography (Figure 2 middle). The obtained velocity model is compared to a slightly smoothed version of the exact one (Figure 2 right). In Figure 3 the high definition velocity model is superimposed with the corresponding PreSDM stack and some logs are extracted for a comparison between the conventional tomography, high definition tomography and exact velocity models. Even if the velocity model obtained by conventional tomography provides a good focusing it is quite smooth and poorly conforms to the geological structures. The high definition tomography slightly improves the focusing and the positioning and greatly improves the structural conformity of the velocity model. Thin velocity layers are resolved in both the shallow and deep parts of the velocity model and nicely match those of the exact model.

Figure 3 shows several logs comparing the exact vertical velocity profile (in black, smoothed in order to fit with the resolution of the high definition tomographic result) with the conventional tomography (red) and high definition tomography (yellow) velocity models. The variations of velocity are nicely detected and quantified, especially in the shallow part.

![Figure 2: Synthetic Marmousi II dataset. left) Conventional tomographic velocity model; middle) High definition tomographic velocity model; right) Exact velocity model (slightly smoothed).](image)
High definition tomography

Application to a marine dataset

High definition tomography is applied to a marine dataset starting from a conventional TTI velocity model building. Figure 4 shows a comparison between the conventional approach and the high definition tomography, where both velocity models are superimposed with the corresponding depth migrated images. The high definition velocity model nicely conforms to geological structures but also improves the structures in the PreSDM image (see the bottom flat reflector).

Figure 5 shows several common image gathers on another depth migrated section (see the corresponding high definition velocity model on Figure 6). We see that the flattening of the CIGs has been significantly improved.

Figure 6 shows the high definition velocity model superimposed with the final PreSDM stack. This Figure is representative of what can be expected from a high definition tomography project as an aid to interpretation. It shows a clear and nice delineation of the velocity structures along the layers. The velocity definition appears suitable for pore pressure prediction.

Conclusion

We have presented two applications of an innovative high definition tomography that inverts densely picked residual move-out data for revealing detailed structurally conformable velocities. The application to the synthetic 2D Marmousi II dataset demonstrates the ability to produce structurally conformable velo-

Figure 4: Marine case study. Left) Conventional tomographic velocity model superimposed with the initial PreSDM; Right) High definition tomographic velocity model superimposed with the final PreSDM.
city models with a level of detail that promotes velocity attributes as an aid to geological interpretation. As such it is complementary to full waveform inversion for the interpretation of reflected waves. The application to the marine dataset further demonstrates the capability of the method in presence of noise. The obtained higher definition velocity model results in improved focusing as well as an improved match to the well velocities.

References

- Guillaume, P., et al., 2011. Geologically consistent velocities obtained by high definition tomography, 81st annual SEG meeting, 4061-4065.
- Plessix, R.E., et al., 2010. Application of acoustic full waveform inversion to a low-frequency large-offset land data set, 81st annual SEG meeting, 930-934.

Acknowledgements

The authors thank Edison International, Petrosen and Petrobras for the authorization to show field data on figure 1.

Figure 5: Marine case study. Improvement of focusing: Top) localization of the CIGs. Bottom left) CIGs before high definition tomography; Bottom right) CIGs after high definition tomography.

Figure 6: Marine case study. Left) High definition velocity model superimposed with the final PreSDM stack. Right) comparison at a well location of the preconditioned well log (blue), conventional velocity model (black) and high definition velocity model (light blue).